
Make the Most out of Last Level Cache
in Intel Processors

Alireza Farshin∗†
KTH Royal Institute of Technology

farshin@kth.se

Amir Roozbeh∗
KTH Royal Institute of Technology

Ericsson Research
amirrsk@kth.se

Gerald Q. Maguire Jr.
KTH Royal Institute of Technology

maguire@kth.se

Dejan Kostić
KTH Royal Institute of Technology

dmk@kth.se

Abstract
In modern (Intel) processors, Last Level Cache (LLC) is
divided into multiple slices and an undocumented hashing
algorithm (aka Complex Addressing) maps different parts
of memory address space among these slices to increase
the effective memory bandwidth. After a careful study
of Intel’s Complex Addressing, we introduce a slice-
aware memory management scheme, wherein frequently
used data can be accessed faster via the LLC. Using
our proposed scheme, we show that a key-value store
can potentially improve its average performance ∼12.2%
and ∼11.4% for 100% & 95% GET workloads, respectively.
Furthermore, we propose CacheDirector, a network I/O
solution which extends Direct Data I/O (DDIO) and places
the packet’s header in the slice of the LLC that is
closest to the relevant processing core. We implemented
CacheDirector as an extension to DPDK and evaluated
our proposed solution for latency-critical applications in
Network Function Virtualization (NFV) systems. Evaluation
results show that CacheDirector makes packet processing
faster by reducing tail latencies (90-99th percentiles) by up
to 119 µs (∼21.5%) for optimized NFV service chains that are
running at 100 Gbps. Finally, we analyze the effectiveness of
slice-aware memory management to realize cache isolation.

Keywords Slice-aware Memory Management, Last Level
Cache, Non-Uniform Cache Architecture, CacheDirector,
DDIO, DPDK, Network Function Virtualization, Cache
Partitioning, Cache Allocation Technology, Key-Value Store.
ACM Reference Format:
Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan
Kostić. 2019. Make the Most out of Last Level Cache in Intel
Processors. In Fourteenth EuroSys Conference 2019 (EuroSys ’19),
March 25–28, 2019, Dresden, Germany. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3302424.3303977

1 Introduction
One of the known problems in achieving high performance in
computer systems has been the MemoryWall [43], as the gap

∗Both authors contributed equally to the paper.
†This author has made all open-source contributions.

between Central Processing Unit (CPU) and Direct Random
Access Memory (DRAM) speeds has been increasing. One
means to mitigate this problem is better utilization of cache
memory (a faster, but smaller memory closer to the CPU) in
order to reduce the number of DRAM accesses.
This cache memory becomes even more valuable due to

the explosion of data and the advent of hundred gigabit per
second networks (100/200/400 Gbps) [9]. Introducing faster
links exposes processing elements to packets at a higher
rate–for instance, a server receiving 64 B packets at a link
rate of 100 Gbps has only 5.12 ns to process the packet before
the next packet arrives. Unfortunately, accessing DRAM
takes ∼60 ns and the performance of the processors is no
longer doubling at the earlier rate, making it harder to
keep up with the growth in link speeds [4, 58]. In order
to achieve link speed processing, it is essential to exploit
every opportunity to optimize computer systems. In this
regard, Intel introduced Intel Data Direct I/O Technology
(DDIO) [53], by which Ethernet controllers and adapters
can send/receive I/O data directly to/from Last Level Cache
(LLC) in Xeon processors rather than via DRAM. Hence, it
is important to shift our focus toward better management of
LLC in order to make the most out of it.
This paper presents the results of our study of the non-

uniform cache architecture (NUCA) [35] characteristics of
LLC in Intel processors where the LLC is divided into
multiple slices interconnected via a bi-directional ring
bus [84], thus accessing some slices is more expensive in
terms of CPU cycles than access to other slices. To exploit
these differences in access times, we propose slice-aware
memory management that unlocks a hidden potential of
LLC to improve the performance of applications and bring
greater predictability to systems. Based on our proposed
scheme, we present CacheDirector, an extension to DDIO,
which enables us to place packets’ headers into the correct
LLC slice for user-space packet processing, hence reducing
packet processing latency. Fig. 1 shows that CacheDirector
can cut the tail latencies (90-99th percentiles) by up to∼21.5%
for highly tuned NFV service chains running at 100 Gbps.
This is a significant improvement for such optimized systems,

1

https://doi.org/10.1145/3302424.3303977

 0

 5

 10

 15

 20

75th 90th 95th 99th MeanSp
ee

du
p

fo
r L

at
en

cy
 (%

)

Percentiles + Mean

Figure 1. Speedup achieved for a stateful service chain
(Router-NAPT-LB) at high-percentiles and mean by using
CacheDirector while running at 100 Gbps.

which can facilitate service providers meeting their Service
Level Objectives (SLO). We believe that we are the first to:
(i) take a step toward using the current hardware more
efficiently in this manner, and (ii) advocate taking advantage
of NUCA characteristics in LLC and allowing networking
applications to benefit from it.
Challenges. We realize slice-aware memory
management by exploiting the undocumented Complex
Addressing technique used by Intel processors to organize
the LLC. This addressing technique distributes memory
addresses uniformly over the different slices based on a hash
function to increase effective memory bandwidth, while
avoiding LLC accesses becoming a bottleneck. However,
exploiting Complex Addressing to improve performance is
challenging for a number of reasons. First, it requires finding
the mapping between different physical addresses and LLC
slices. Second, it is difficult to adapt the existing in-memory
data structures (e.g., for a protocol stack) to make use of
the preferentially placed content (e.g., packets). Finally, we
have to find a balance between performance gains due to
placing the content in a desirable slice vs. the computational
or memory overhead for doing so.
Contributions. First, we studied Complex Addressing’s
mapping between different portions of DRAM and different
LLC slices for two generations of Intel CPU (i.e., Haswell
and Skylake) and measured the access time to both local
and remote slices. Second, we proposed slice-aware memory
management, thoroughly studied its characteristics, and
showed its potential benefits. Third, we demonstrated that
a key-value store can potentially serve up to ∼12.2% more
requests by employing slice-aware management. Fourth, this
paper presents a design & implementation of CacheDirector
applied as a network I/O solution that implements slice-
aware memory management by carefully mapping the
first 64 B of a packet (containing the packet’s header) to
the slice that is closest to the associated processing core.
While doing so, we address the challenge of finding how
to incorporate slice-aware placement into the existing Data
Plane Development Kit (DPDK) [15] data structures without
incurring excessive overhead. We evaluated CacheDirector’s

performance for latency-critical NFV systems. By using
CacheDirector, tail latencies (90-99th percentiles) can be
reduced by up to 119 µs (∼21.5%) in NFV service chains
running at 100 Gbps. Finally, we showed that slice-aware
memory management could provide functionality similar to
Cache Allocation Technology (CAT) [51].
The remainder of this paper is organized as follows. §2

provides necessary background and studies Intel Complex
Addressing and the characteristics of different LLC slices
regarding access time. §3 elaborates the principle of slice-
aware memory management and its potential benefits.
Next, §4 presents CacheDirector and discusses its design &
implementation as an extension to DPDK; while §5 evaluates
CacheDirector’s performance. Moreover, §6 and §7 discuss
the portability of our solution and cache isolation via slice-
aware memory management. §8 addresses the limitations
of our work. Finally, we discuss other efforts relevant to
our work and make concluding remarks in §9 and §10,
respectively.

2 Last Level Cache (LLC)
A computer system is typically comprised of several CPU
cores connected to a memory hierarchy. For performance
reasons, each CPU needs to fetch instructions and data from
the CPU’s cache memory (usually very fast static random-
access memory (static RAM or SRAM)), typically located
on the same chip. However, this is an expensive resource,
thus a computer system utilizes a memory hierarchy of
progressively cheaper and slower memory, such as DRAM
and (local) secondary storage. The effective memory access
time is reduced by caching and retaining recently-used
data and instructions. Modern processors implement a
hierarchical cache as a level one cache (L1), level two cache
(L2), and level 3 cache (L3), also known as the Last Level
Cache (LLC). In the studied systems, the L1 and L2 caches
are private to each core, while LLC is shared among all CPU
cores on a chip. Caches at each level can be divided into
storage for instructions and data (see Fig. 2).

We consider the case of a CPU cache that is organized with
a minimum unit of a 64 B cache line. Furthermore, we assume
that this cache is n-way set associative (“n” lines form one
set). When a CPU needs to access a specific memory address,
it checks the different cache levels to determine whether
a cache line containing the target address is available. If
the data is available in any cache level (aka a cache hit),
the memory access will be served from that level of cache.
Otherwise, a cachemiss occurs and the next level in the cache
hierarchywill be examined for the target address. If the target
address is unavailable in the LLC, then the CPU requests this
data from the main memory. A CPU can implement different
cache replacement policies (e.g., different variations of Least
Recently Used (LRU)) to evict cache lines in order to make
room for subsequent requests [55, 80].

2

DRAM

Non-Volatile Memory / Storage

≃60 ns

> 1000 ns

L1
i

L1
d

L2

C
o

re
 0

C
B

o
 0

L1
i

L1
d

L2

C
o

re
 0

C
B

o
 0

Sl
ic

e
0

(U
p

 t
o

 2
.5

 M
B

)

L1
i

L1
d

L2

C
o

re
 0

C
B

o
 0

Sl
ic

e
0

(U
p

 t
o

 2
.5

 M
B

)
Sl

ic
e

i
(U

p
 t

o
 2

.5
 M

B
)

L1
i

L1
d

L2

C
o

re
 i

C
B

o
 i

Sl
ic

e
i

(U
p

 t
o

 2
.5

 M
B

)

L1
i

L1
d

L2

C
o

re
 i

C
B

o
 i

Slice i+1
(U

p
 to

 2
.5

 M
B

)

L1
i

L1
d

L2

C
o

re
 i+1

C
B

o
 i+1

Slice i+1
(U

p
 to

 2
.5

 M
B

)

L1
i

L1
d

L2

C
o

re
 i+1

C
B

o
 i+1

Slice N
(U

p
 to

 2
.5

 M
B

)

L1
i

L1
d

L2

C
o

re
 N

C
B

o
 N

Slice N
(U

p
 to

 2
.5

 M
B

)

L1
i

L1
d

L2

C
o

re
 N

C
B

o
 N

..
.

..
. ..
.

..
.

..
. ..
.

L1
i

L1
d

L2

C
o

re
 0

C
B

o
 0

Sl
ic

e
0

(U
p

 t
o

 2
.5

 M
B

)
Sl

ic
e

i
(U

p
 t

o
 2

.5
 M

B
)

L1
i

L1
d

L2

C
o

re
 i

C
B

o
 i

Slice i+1
(U

p
 to

 2
.5

 M
B

)

L1
i

L1
d

L2

C
o

re
 i+1

C
B

o
 i+1

Slice N
(U

p
 to

 2
.5

 M
B

)

L1
i

L1
d

L2

C
o

re
 N

C
B

o
 N

..
.

..
. ..
.

..
.

..
. ..
.

CPU

4 Cycles 11 Cycles

≃34 Cycles

Figure 2. Example of the memory hierarchy in an Intel Xeon
Processor E5 v3 (Haswell) with N cores.

Physical memory addresses are logically divided into
different portions (based upon an offset, set index, and tag,
see Fig. 3). The set index defines which set in the cache
can hold the data corresponding to a given address. By
concurrently comparing the tag portion of a given address
with the tag portion of the address of the cache lines available
in one set, the system can determine whether the data
corresponding to that address is present in the cache.

 L1 Tag L1 Index Offset L1 Tag L1 Index Offset

 L2 Tag L2 Index Offset L2 Tag L2 Index Offset

 L3 Tag L3 Index Offset L3 Tag L3 Index Offset

Physical Address bits 063 Physical Address bits 063

Figure 3. Physical address mapping within cache hierarchy.

Intel’s micro-architecture, from Sandy Bridge and forward,
re-designed the LLC by dividing the LLC into multiple slices.
The CPU cores and all LLC slices are interconnected by
a bi-directional ring bus∗. However, due to the differences
in paths between a given core and the different slices (aka
NUCA), accessing data stored in a closer slice is faster than
accessing data stored in other slices. §2.2 validates and
quantifies this behavior by measuring access times from

∗The ring-based architecture has recently been replaced by a mesh
architecture in the Intel Xeon processor Scalable family (i.e., Skylake) [48],
see §6.

one core to different LLC slices. Although each of the LLC
slices operates and is managed as a standard cache, all slices
are addressable and accessible by all cores as a single logical
LLC. Additionally, each LLC slice is equipped with Intel’s
hardware performance counters which monitor the CBo† (or
C-Box) register for each slice, see Fig. 2. Each C-Box can be
configured to measure a different event for a slice, e.g., count
total number of LLC lookups or number of LLC misses.
The physical memory address determines the slice into

which data will be loaded. Intel uses an undocumented
hash function that receives the physical address as an input
and determines which slice should be associated with that
particular address.

2.1 Mapping between Physical Addresses and Slices
There have been many attempts to find the slice mapping
and reverse-engineer Intel’s Complex Addressing [1, 27, 39,
42, 61, 84]. In our test system, a server equipped with an
Intel Xeon-E5-2667-v3, we followed the approach proposed
by Clémentine Maurice, et al. [42]. This approach can be
divided into two parts:

Polling. This part is used to find the mapping between
different physical addresses and LLC slices. For this, the
C-Box counters (see §2) are configured to count all accesses
to each slice. Next, a specific physical address is polled
several times, thus a C-Box counter showing a larger
number of lookups will identify that the slice is mapped
to that particular physical address. By applying the same
technique to different physical addresses, the mapping will
be found. This technique can be applied to any processor
with any number of cores, which are equipped with uncore
performance monitoring unit (e.g., C-Box counters).

Constructing the hash function. Although using polling
is sufficient to learn themapping, it can be expensive in terms
of time. Hence, it would be convenient to know the hash
function used in Complex Addressing. According to [42], the
LLC hash function for a CPU with 2n cores can be defined
as a XOR of multiple bits. Therefore, one can compare the
slices found, acquired by polling, for different addresses that
differ in only one bit and then determine whether that bit is
part of the hash function or not. If two addresses are mapped
to different slices, then that bit is assumed to be one of the
inputs to the hash function. By performing the above steps,
the hash function can be constructed and then verified by
assessing a wide range of address and comparing the output
of hash function with the actual mapping between memory
addresses and slices. We note that the hash function found
for our test machine is the same function founded by [42]
for other Intel CPUs with 2n cores, which is shown in Fig. 4.

†Intel Xeon processor Scalable family is equipped with a different
monitoring unit called Caching and Home Agent (CHA).

3

Where PA is Physical Address

Figure 4. Reverse-engineered Hash Function of Intel Xeon-
E5-2667-v3 CPU with 8 cores - Dark blue cells correspond
to the bits that are included in the hash function.

2.2 Access Time to different Slices in LLC
As discussed previously, due to the difference in paths from
each core to the different slices in the LLC, we expected
to experience a difference in access time. To verify this
hypothesis, we designed a test application to measure the
number of cycles needed to access cache lines residing
in different slices of LLC from a single core. All of these
measurements were made on a system running Ubuntu 16.04
(linux kernel-4.4.0-104) with 128GB of RAM and two Intel
Xeon-E5-2667-v3 processors. Each processor has 8 cores
running at 3.2GHz. The specification of the cache hierarchy
in Xeon-E5-2667-v3 is shown in Table 1.

Table 1. Intel Xeon-E5-2667 v3 - Cache Specification.

Cache Level Size #Ways #Sets Index-bits[range]
LLC-Slice 2.5MB 20 2048 16-6
L2 256 kB 8 512 14-6
L1 32 kB 8 64 11-6

To measure the access time from one specific core to a
LLC slice, we pin our test application to that core. Then,
we allocate a buffer backed by a 1GB hugepage by using
mmap and then acquire the physical address of the allocated
hugepage via /proc/self/pagemap [25, 71]. Next, we try to
fill a specific set in L1, L2, and our desired LLC slice. In
our test application, only twenty cache lines have been
selected because of the set-associativity of this processor’s
LLC. Thereafter, we write a fixed value into all of these cache
lines and then flush the cache hierarchy by calling the clflush
instruction to push all of the cache contents to main memory.
To ensure that all twenty cache lines are available in our

desired LLC slice we read all of the selected cache lines.
As the set-associativity of the L2 and L1 caches is only
eight, we start by reading the first eight cache lines, as
they probably are not available in the L2 or L1 caches. By
measuring the number of cycles needed to read the first eight
cache lines, we learn the access time to a specific slice in the
LLC. These steps were repeated for all of the cores and all of
the slices to find the access time from each core to all LLC
slices. Measurements of the number of cycles used the rdtscp
and rdtsc instructions following Intel’s guidelines [54]. To
increase the measurement’s accuracy and to prevent other

tasks/processes from interfering with these measurements,
a single CPU socket was isolated.

We ran the experiment 1000 times for each core and LLC
slice pair. Results for all of the cores follow the same behavior.
Fig. 5a shows the results for core 0 when the cache lines are
read from different LLC slices. These results suggest that
LLC access times are bimodal since the caches are located on
a physical ring bus, e.g., accessing slices 0, 2, 4, and 6 require
fewer CPU cycles. Additionally, these results show that
reading data from the appropriate slice (that is closest to the
CPU core) can save up to ∼20 cycles in each access to LLC∗,
which is equal to 6.25 ns. This saving could be aggregated, as
cache misses in lower levels is inevitable for some real-world
applications. The aggregated savings can be used to execute
useful instructions instead of stalling, i.e., waiting for data to
be available to the CPU. Furthermore, the amount of saving
is comparable with the time budget for processing small
packets being sent at 100 Gbps (i.e., 5.12 ns). Note that the
addresses of the cache lines used in this experiment are saved
in an array of pointers. Therefore, the measured values may
include an additional memory/cache access and these access
times are different from the nominal LLC access times stated
by Intel (e.g., 34 cycles for the Haswell architecture [12]).
However, this extra overhead shows the actual impact of
access time on real-world applications, as using pointers is
common when programming.

 0

 10

 20

 30

 40

 50

 60

0 1 2 3 4 5 6 7

N
um

be
r o

f C
yc

le
s

Slice Number

(a) Read.

 0

 2

 4

 6

 8

 10

 12

0 1 2 3 4 5 6 7

N
um

be
r o

f c
yc

le
s

Slice Number

(b)Write.

Figure 5. Access time to different LLC slices from core 0 in
Xeon-E5-2667 v3 (Haswell).

We repeated the same experiment for write operations.
These results are shown in Fig. 5b. Note that there is no
difference in latency for write operations as the updating
policy of the CPU is write-back. This policy directs write
operations to the L1 cache and upon completion the write-
back will be immediately confirmed to the host [69].

3 Slice-aware Memory Management
In this section, we introduce slice-aware memory
management, by which an application can ask for memory
regions that are mapped to specific LLC slice(s). Applications
can utilize our memory management scheme to improve

∗Using rdtscp and rdtsc instructions adds around 32 extra cycles to all
measurements, hence we have subtracted this value from all of the results
that are reported.

4

their performance by allocating memory that is mapped to
the most appropriate LLC slice(s), i.e., that have lower access
latency. Moreover, slice-aware memory management can
also be used to mitigate the noisy neighbor effect and realize
isolation, as discussed in §7.
In order to demonstrate the impact of this memory

management scheme on the performance of applications, we
designed an experiment as follows: (i) a 1 GB hugepage was
used to allocate 1.375MB∗ non-contiguous memory which
maps to a specific slice, (ii) locations in this memory are
read/written randomly (with uniform distribution) for a total
of 10000 times in each run. This experiment was run 100
times and compared with normal memory allocation using
contiguous memory. Fig. 6a indicates the average speedup
in slice-aware memory management for read operations.
This result correlates with our previous findings (see Fig. 5a).
Although the results in §2.2 showed that writing to different
slices did not change the number of cycles per write, Fig. 6b
demonstrates that the difference in access times becomes
visible with an increasing number of write operations. This
behavior is related to the write-back policy since modified
cache lines accumulate in L1 and they need to be written to
higher level caches, specifically L2 and LLC,when there is not
enough space in L1 for newer cache lines. Both experiments
use 1GB hugepages, hence the improvements are not due to
fewer TLB misses. It is expected that one would observe the
same improvement when using 4 kB or 2MB pages.

-20
-15
-10

-5
 0
 5

 10
 15
 20

0 1 2 3 4 5 6 7

Av
er

ag
e

Sp
ee

du
p

(%
)

Slice Number

(a) Read.

-20
-15
-10

-5
 0
 5

 10
 15
 20

0 1 2 3 4 5 6 7

Av
er

ag
e

Sp
ee

du
p

(%
)

Slice Number

(b)Write.

Figure 6. Average speedup achieved by core 0 (Xeon-E5-
2667 v3) in access time for slice-aware memory management
compared to normal memory allocation. The average
execution times for 10000 read andwrite scenarios for normal
memory allocation are 2262.38ms and 5772.35ms.

Using multiple cores and larger datasets. To further
investigate the potential benefits of slice-aware memory
management, we ran the same experiment for different array
sizes while running on multiple cores (see Fig. 7). Both
Fig. 7a and Fig. 7b suggest that using slice-aware memory
management would lead to performance improvement when
the working dataset in any given period can be fit into a slice
(i.e., 2.5MB in this architecture). Furthermore, applications
with larger datasets can still take advantage of this scheme by
putting their most frequently used data in the preferable LLC

∗Corresponding to half the size of each slice plus the size of L2.

slice(s). Although we ran these experiments on the Haswell
architecture, slice-aware memory management produces the
same improvement on the newer architecture (i.e., Skylake),
see §6.

 0

 50

 100

 150

 200

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M

Av
er

ag
e

O
PS

 (M
illi

on
)

Array Size (Byte)

Normal
Slice-aware

L2 Slice LLC DRAM

(a) Read.

 0

 50

 100

 150

 200

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M

Av
er

ag
e

O
PS

 (M
illi

on
)

Array Size (Byte)

Normal
Slice-aware

L2 Slice LLC DRAM

(b) Write.

Figure 7. Average Operations Per Second (OPS) of the
system for different array sizes while using 8 cores on
a CPU with Haswell architecture. For slice-aware, each
core is allocating the array using the memory mapped
to the closest LLC slice. The array elements has been
read/written randomly with uniform distribution generated
by uniform_int_distribution class in C++11.

3.1 Applicability
The experiments described in this section show that
knowing the mapping between physical addresses and
LLC slices can enable developers to further improve the
applications’ performance with minor effort. As shown
in Fig. 7, improvements are tangible when the per-core
working dataset fits into an LLC slice. Many applications can
benefit from our proposed memory management scheme,
two examples are Key-Value Stores (KVS) and NFV. In this
paper, we have focused on NFV, but we will briefly discuss
the expected improvements in a KVS.

5

KVS. In-memory KVS is a type of database in which clients
send a request for a key and server(s) reply with a value.
Two common operations supported by a KVS are read &
write requests, also known as GET & SET. Real-world KVS
workloads are usually skewed∗ and follow a Zipfian (Zipf)
distribution [2], i.e., some keys are more frequently accessed,
making KVS a candidate for our solution.
We implemented a test application running on top of

DPDK to emulate the behavior of a KVS, in which the size of
keys and values are 64 B. We ran experiments for different
workloads with/without slice-aware memory management.
In our setup, the server serves a request only with one CPU
core and a client sends requests encapsulated in 128 B TCP
packets at high rate to stress the server. We measured the
performance of our emulated KVS on the server side so that
we could ignore the networking bottlenecks while measuring
the impact on request serving rate.
Fig. 8 shows the average Transactions Per Second (TPS)

for different GET/SET ratios. For uniform key distribution,
the probability of requesting the same key is quite low,
which hides the benefits, as most of the requests must be
served from DRAM. However, for a skewed workload (i.e.,
which accesses some keys more frequently), the probability
of having a value for a requested key in LLC is higher.
In our approach, these values would be available in the
closest LLC slice; therefore, a CPU core can serve the
requests for the popular keys faster compared to the normal
scenario and slice-aware memory management can improve
performance by up to ∼12.2%. Our measurements show
that the average number of cycles required to serve a
request while doing 100% GET with skewed distribution
is ∼160 cycles, which is 34 cycles fewer (∼17.5%) than
for normal memory management. We believe these results
motivate further investigation, as it shows the potential
improvements that can be achieved by a slice-aware KVS.
However, our experiment does not represent a real-world
KVS for several reasons: (i) we have only used one CPU
core for receiving & serving the requests, (ii) we have used
small keys & values (i.e., 64 B†), and (iii) our emulated
KVS does not implement all available functions of a KVS.
Additional functions might lead to more cache eviction,
as they might have a larger memory footprint, which in
turn might decrease the expected improvements. A more
complete implementation and evaluation of slice-aware KVS
remains as future work.
NFV. Network Functions (NF) typically perform operations
on packets, mostly on packet headers (which can fit into
one LLC slice). As a packet is frequently processed by
different NFs in a service chain, NFs can potentially take

∗Skewness is the degree of distortion from the normal distribution, or
more precisely it describes the lack of symmetry and there is a formula to
calculate the skewness of any given workload [20].

†The current implementation of KVS cannot map values greater than
64 B to the appropriate LLC slice, see §8.

 0

 5

 10

 15

 20

 25

100% GET 95% GET 50% GET

Av
er

ag
e

TP
S

(M
illi

on
)

Workload

Slice-Skewed-0.99

21.259 20.910

18.420

Normal-Skewed-0.99

18.948 18.763

17.207

Slice-Uniform

6.814 6.818 6.697

Normal-Uniform

6.701 6.690 6.470

Figure 8. Average Transaction per Second (TPS) at server
side for an emulated KVS implemented by using DPDK and
running on 1 core. We allocated 1GBmemory, which is equal
to 224 × 64 B values. We used MICA’s library [37] to generate
skewed (0.99) keys in the range of [0, 224).

advantage of slice-aware memory management. The rest
of this paper proposes CacheDirector to exploit slice-aware
memory management and discusses how it can be used to
improve the performance of NFV service chains.

4 CacheDirector Design & Implementation
This section advances state-of-the-art networking solutions
by exploiting Intel’s LLC design together with slice-aware
memory management in user-space packet processing.
We propose CacheDirector, a network I/O solution that
extends DDIO and sends each packet’s header directly
to the appropriate slice in the LLC; hence, the CPU core
that is responsible for processing a packet can access the
packet header in fewer CPU cycles. To show the benefits of
CacheDirector, we implement this solution as an extension
to DPDK [15]. Note that the concept behind CacheDirector
could be applied to other packet processing frameworks.
We used DPDK as it was easier to prototype CacheDirector
in user-space, but the same approach could be used for
kernel network stack optimization. The section begins with
some background about DPDK & its memory management
libraries and then elaborates the design principles &
implementation of CacheDirector.

4.1 Data Plane Development Kit
DPDK is a user-space network I/O framework, first
developed by Intel. DPDK enables direct communication
between applications and network devices without involving
the Linux network stack. Additionally, DPDK offers a
set of components and libraries through its Environment
Abstraction Layer (EAL) that can be used by DPDK-based
applications for packet processing.

During DPDK initialization, the NIC is unbound from the
Linux kernel (e.g., Intel NICs) or it uses bifurcated drivers

6

(e.g., Mellanox drivers) to make user-space interaction
with the NIC possible. After initialization, one or more
memory pools are allocated from hugepage(s) in memory.
These memory pools (aka mempools) include fixed-size
elements (objects), created by the librte_mempool library.
DPDK’s memory management is non-uniform memory
access (NUMA) aware and it applies memory alignment
techniques to improve performance. In DPDK, network
packets are represented by packet buffers (mbufs) through
the rte_mbuf structure. Buffer Management allocates and
initializes mbufs from available elements in mempools. Each
mbuf contains metadata, a fixed-size headroom, and a data
segment (used to store the actual network packet), see Fig 9.
The metadata includes message type, length, starting address
of the data segment, and userdata. It also contains a pointer
to the next buffer. This pointer is neededwhen usingmultiple
mbufs to handle packets whose size is larger than the data
area of a single mbuf. After initializing a driver for all of
the receiving and transmitting ports, one or more queues
are configured for receiving/transmitting network packets
from/to the NIC. These queues are implemented as ring
buffers from the available mbufs in mempools. Finally, the
receiving ports are set with correct MAC addresses or to
promiscuous mode and then DPDK is ready to send and
receive network packets.
Communication between an application and NIC is

managed in DPDK through a Poll Mode Driver (PMD). PMD
provides Application Programming Interfaces (APIs) and
uses polling to eliminate the overhead of interrupts. PMD
enables DPDK to directly access the NIC’s descriptors for
both receiving and transmitting packets. To receive packets,
DPDK fetches packet(s) from the NIC’s RX descriptor into its
receiving queues when the application periodically checks
for new incoming packets. To send packets, the application
places the packets into transmitting queues from which
DPDK takes packet(s) and pushes them into the NIC’s TX
descriptor, see Fig. 9.

App

mbuf

mbuf

mbuf

mempool

mbuf

mbuf

mbuf

mempool

mbuf struct
(metadata)

Headroom

Data
(Packet)

mbuf struct
(metadata)

Headroom

Data
(Packet)

NIC

2 cache
lines

Fixed

Figure 9. Simplified memory management in DPDK: the
size of the mbuf struct is equal to two cache lines (i.e., 128 B)
and the headroom size is fixed (default value: 128 B).

4.2 CacheDirector
The main objective of CacheDirector is to bring awareness of
Intel’s LLC Complex Addressing to DPDK. More specifically,
incoming packets are placed into the appropriate LLC slice,
thus the core responsible for processing these packets
can access them faster. To achieve this goal, the buffer
and memory pool manager in DPDK initialize the mbufs
so that they will be mapped to the appropriate slice.
However, implementing this idea faces some challenges.
These challenges and the ways CacheDirector tackles them
are described below.

Small chunks. Intel’s LLC Complex Addressing maps
almost every cache line (64 B) to a different LLC slice.
Consequently, it is impossible to send large packets to the
appropriate LLC slice without packet fragmentation. To deal
with this challenge, CacheDirector ensures that at least the
first 64 B of packets, containing the packet’s header, are
mapped to the appropriate LLC slice by introducing dynamic
headroom to thembufs. As there are some applicationswhich
might access a different part of the packet more frequently
(e.g., Virtual Extensible LAN and Deep Packet Inspection),
CacheDirector can be configured to map any other 64 B
portion of the packet to the appropriate LLC slice.

Dynamic headroom. CacheDirector can dynamically
change the amount of headroom such that the starting
address of the data area of an mbuf is at an address which
is mapped to the desired LLC slice for each CPU core using
that mbuf at runtime, see Fig. 10. However, since DPDK
assumes that the headroom is fixed (e.g., 128 B), setting the
headroom size to values greater than this will result in a
reduction of the data area of mbufs (the default size is 2 kB).
If the remaining data area is less than the packet’s size, then
DPDK uses multiple mbufs for one packet, which might be
an expensive operation as an application needs to traverse
a linked-list to access the whole packet. To tackle this, we
must find the maximum amount of headroom required for
mbufs in order to ensure that no adverse shrinkage of the
data area will happen. Therefore, we performed a experiment
in which ∼12.3 million packets from an actual campus trace
were sent to a server and then calculated the distribution
of the dynamic mbufs’ headroom sizes. The median of the
distribution is 256 B; 95% of the values are less than 512 B;
and the maximum needed headroom size is 832 B.

Examining this distribution, we set the default headroom
size to 832 B to ensure that the maximum desired data area is
available - but this is at the cost of extra memory usage. Note
that extra memory usage does not affect performance (e.g.,
does not increase TLB misses), as memory allocation is done
by using hugepages. The distribution of dynamic headroom
size might vary on different micro-architectures. However,
differences in the distribution and memory wastage is not
a big concern, as it can be eliminated by handling the mbuf

7

HeadroomHeadroom

mbuf struct

udata64

Changes Dynamically

Used to save
headroom size

First 64 B of the
Packet

(Packet Header)

Will be put in the
appropriate LLC slice

Will be put randomly
in one of LLC slices

Traditional
DPDK

DPDK with
CacheDirectorRest of the Packet

Not used

Fixed (e.g., 128 B)

Figure 10. CacheDirector changes to the mbuf structure.

allocation at the application level (e.g., in FastClick [3]). For
instance, an application can allocate one large mempool
containing mbufs. Then, it can sort mbufs across multiple
mempools, each of which is dedicated to one CPU core, based
on their LLC slice mappings. However, we implemented
CacheDirector in DPDK as an application-agnostic solution.

Ensuring the appropriate headroom size. Since an mbuf
can be used by multiple cores, CacheDirector must ensure
that the headroom size is set to the appropriate value so
that the first 64 B of the data segment is mapped to the
appropriate LLC slice for the CPU core that will be fetching
a packet from the NIC. Therefore, at run time CacheDirector
sets the actual headroom size just before giving the address
to the NIC for DMA-ing∗ packets. We implemented this as a
part of user-space NIC drivers in DPDK. For example, when
CPU core 5 wants to fetch packet(s) from a NIC, the NIC
driver calculates the headroom such that the data segment
of the mbuf(s) is in slice 5. It is worth noting that this step is
eliminated when mbufs are sorted at the application level.

Mitigating calculation overhead. To avoid unnecessary
run time overhead, we calculate the headroom needed to
place the data segment of each mbuf into specific LLC slices
during DPDK’s initialization phase. These values are saved
in the userdata part (i.e., udata64) of the mbuf structure
(metadata), see Fig. 10. Later, the NIC driver sets the actual
headroom size based on the CPU core that will be fetching
a packet from the NIC by using these saved values. For
example, when CPU core 2 wants to fetch data from the
NIC, the NIC driver looks into the userdata part of each
mbuf and sets its headroom according to the pre-calculated
value for slice 2. It is worth mentioning that we save the
number of cache lines instead of actual headroom size and
since 832 (the maximum required headroom size) is 13 cache
lines, 4 bits is sufficient for each core. Therefore, our solution
would be scalable for up to 16 cores on one CPU, as udata64
is 64 bits in size.

∗Direct Memory Access

5 Evaluation
In this section, we demonstrate CacheDirector’s effectiveness
by evaluating the performance of DPDK with/without
CacheDirector functionality for two different types of
applications in NFV systems.

Testbed. In our testbed, we use a simple desktop machine
as a plain orchestration service (aka pos) for deploying,
configuring, and running experiments as well as collecting
and analyzing the data (see Fig 11). In addition, we have
connected two identical servers, one as load generator
(aka LoadGen) and another one as Device under Test (aka
DuT) which is running a Virtualized Networking Function
(VNF). These two machines have dual Intel Xeon E5-2667
v3 processors (see §2.2), 128GB of RAM, and a Mellanox
ConnectX-4 MT27700 card†. The LoadGen has a dual port
Mellanox NIC. In all of the experiments on DuT, hyper-
threading is disabled, one CPU socket (including 8 CPU
cores) on which we run experiments is isolated. The OS
is Ubuntu 16.04.4 with Linux kernel v4.4.0-104. In order to
implement the CacheDirector functionality in DPDK, we
extended DPDK v18.05 and we disabled vectorized PMD.

NFV. To see the impact of CacheDirector on NFV service
chains, we evaluate the performance of Metron [33],
a state-of-the-art platform for NFV, in the presence of
CacheDirector. We implemented two different applications,
a simple forwarding and a stateful service chain, using
Metron’s extension of FastClick [3]. In our experiments, we
use an actual campus trace‡, in which 26.9% of frames are
smaller than 100 B; 11.8% are between 100 & 500 B; and the
remaining frames are more than 500 B. These different traffic
classes were used together with two different rates as shown
in Table 2. Furthermore, we evaluate CacheDirector while
the applications are running on different numbers of cores
(i.e., from 1 to 8 CPU cores).

Measurement Method. For measuring end-to-end latency,
we follow the black box approach explained in [19], where
data is collected on the egress/ingress port of the LoadGen to
measure throughput and latency. To do so, the LoadGen

NIC NIC

NIC

LoadGenDuT
P1 P1

P2

pos

11

2

3

Loopback

1

2

3

Configure Testbed

Run Experiment

Gather Data

Figure 11. Experiment setup.

†CQE_COMPRESSION [44] is set to balancedmode (i.e., zero) and PAUSE
frames [49] are enabled.

‡Same trace that was used in [33].
8

Table 2. The traffic classes and rates used in the experiments.
Low rate traffic (“L”) was generated at 1000 packets per
second (pps) and high rate traffic (‘H”) at ∼4 Mega pps.

Packet Size (B) 64 512 1024 1500 Mixed
Rates L, H L, H L, H L, H 5-100 Gbps

writes a timestamp in each packet’s payload and sends
the packet to the DuT which is running a VNF. After
processing the packets, DuT sends the packets back to the
LoadGen. Upon receiving each packet, the LoadGen reads the
saved timestamp inside each packet’s payload and calculates
throughput and the end-to-end latency for each packet.
This latency is composed of three parts: queuing delay &
processing time at LoadGen; link delay; and queuing delay
& processing time at DuT. CacheDirector only affects the
processing time of packets at the DuT and consequently the
queuing delay on that side. To assess the delays not due to
the DuT, we run a loopback experiment in which two ports
of LoadGen were interconnected back to back (P1 and P2 in
Fig. 11), i.e., traffic sent from one port of LoadGen is received
by the other port without any additional processing. By
doing so, we are able to measure and characterize the effect
of the link latency and extra overheads of the LoadGen, such
as queuing and timestamping cost. From this point on, we
refer to this portion of the end-to-end latency as “loopback”
latency.Wemeasure this latency for all configurations shown
in Table 2 and we removed the minimum value of the
loopback latency from the end-to-end latency in most of
the measurements.

5.1 Simple Forwarding
The simple forwarding application swaps the sending and
receiving MAC addresses of the incoming packets and sends
them back to LoadGen. This application assesses the impact
of CacheDirector on stateless or low processing network
functions. We ran this application for different numbers of
cores and different sets of traffic. Here we discuss only the
results for two sets of traffic while using 8 cores on one
CPU socket: (i) five thousand 64 B packets generated by the
FastClick RatedSource module and (ii) mixed-size packets
from the real trace at 100 Gbps (see Table 2 for details).
All other traffic sets (except those related to only 1500 B
packets) show the same behavior, but with different latency
values - because of different packet sizes and consequently
different queuing time at the DuT. The results regarding
1500 B packets will be discussed in §8.

5.1.1 64 B Packets at low rate
CacheDirector only affects the processing time of packets at
the DuT and consequently the queuing delay on that side.
Therefore, to minimize the queuing effect and to see the pure
impact of CacheDirector we send five thousand 64 B packets

at a low rate (i.e., 1000 pps). Fig. 12 shows the variation of
the higher percentiles of end-to-end latency for 50 such runs.
This figure shows that CacheDirector reduces the higher
percentile latencies by around ∼20% which is equal to 1 µs
improvement per packet on the DuT side. It is important to
note that even improvements of 1 µs must not be ignored
since 1 µs is equal to 3200 CPU cycles for a processor running
at 3.2GHz, which can be utilized to process packets instead
of stalling. This becomes even more critical at 100Gbps links,
as a server has only 5.12 ns (i.e., ∼17 cycles) to process a 64 B
packets before receiving a new packet.

 0

 2

 4

 6

 8

 10

 12

75th 90th 95th 99th

La
te

nc
y

(µ
s)

Percentiles

DPDK
DPDK + CacheDirector

Figure 12. End-to-end latency without loopback latency for
64 B packets sent at the rate of 1000 pps. At each percentile,
the left box refers to DPDK and the right one DPDK with
CacheDirector. The minimum loopback latency is 9 µs.

5.1.2 Mixed-size Packets at 100 Gbps
To assess CacheDirector’s impact at gigabit per second link
speeds, we send packets from the campus trace with mixed-
size packets at 100Gbps. Fig. 13 shows the results of 50
runs, in which we use Receive Side Scaling (RSS) [26] to
distribute packets among 8 cores. The improvement in tail
latencies for mixed-size packets at this rate is even greater
than for 64 B packets. The top row of Table 3 shows the
measured throughput for this experiment. The ∼76Gbps
limit for the forwarding application is due to the Mellanox
NIC’s limitation for packets smaller than 512 B [79] and other
architectural limitations such as PCIe [50] and DDIO∗.

Table 3. Throughput while sending mixed-size packets at
the rate of 100Gbps + Average Improvement.

Scenario Throuдhput
(Gbps)

Improvement
(Mbps)

Simple Forwarding 76.58 31.17
Router-NAPT-LB
(FlowDirector with H/W offloading)

75.94 27.31

∗DDIO uses a limited number of ways in LLC for I/O. The default
number of ways is 2, which is equal to 10% in our CPU that has 20 ways [67].

9

 0

 100

 200

 300

 400

 500

 600

75th 90th 95th 99th Mean

La
te

nc
y

(µ
s)

Percentiles + Mean

DPDK
DPDK + CacheDirector

(a) End-to-end latency without loopback latency.

 0

 5

 10

 15

 20

 25

 30

75th 90th 95th 99th Mean

Im
pr

ov
em

en
t f

or
 L

at
en

cy
 (µ

s)

Percentiles + Mean

(b) Latency improvement.

Figure 13. End-to-end latency and improvement for a simple
forwarding application running on 8 cores with mixed-size
packets at 100 Gbps with RSS. The minimum loopback
latency is 495 µs. The values shows the median of 50 runs.
Error bars represent 1st and 3rd quartiles.

5.2 Stateful Service Chain
To show the practicality and benefits of slice-aware memory
management, we ran Metron [33] with and without
CacheDirector to evaluate the performance of a stateful
NFV service chain built from three network functions: a
router, a Network Address Port Translation (NAPT), and
Load Balancer (LB) using a flow-based Round-Robin policy.
For the router we followed Metron’s approach, in which the
routing table of the router with 3120 entires is offloaded to the
Mellanox NIC by using FlowDirector technology [29], while
the remainder of the router’s functionalities are handled in
software.

5.2.1 Mixed-size Packets at 100 Gbps
For this evaluation, packets were generated using the campus
trace and the results from 50 runs are shown in Fig. 14
(and earlier in Fig. 1). The second row of Table 3 shows the
throughput for this experiment. Since the service chain is
more memory-intensive compared to the simple forwarding

0

20

40

60

80
90

100

 0 200 400 600 800 1000

C
D

F

Latency (µs)

DPDK
DPDK + CacheDirector

≈ 20%

(a) CDF of end-to-end latency without loopback latency.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

75th 90th 95th 99th Mean

Im
pr

ov
em

en
t f

or
 L

at
en

cy
 (µ

s)

Percentiles + Mean

(b) Latency improvement.

Figure 14. CDF of end-to-end latency without loopback
latency and improvement for a stateful service chain (Router-
NAPT-LB) running on 8 cores while sending mixed-size
packets at the rate of 100 Gbps with HW offloading using
FlowDirector. The minimum loopback latency is 495 µs. The
values show the median of 50 runs.

application, the gain becomes more tangible for Router-
NAPT-LB. Note that using FlowDirector changes the trend
in latency improvements (compare Fig. 13 and Fig. 14). The
improvements are increasing for RSS, i.e., the improvement
for the 99th percentile is higher than for the 90th percentile.
However, the improvements for FlowDirector behaves in the
opposite way (i.e., the performance gain is decreasing). We
observed that FlowDirector reduces contention in each slice
by performing better load balancing compared to RSS for the
campus trace that was used. Moreover, we believe that the
reason for this behavior may also be related to DDIO’s 10%
limit [67] and the slice imbalance (see §8) incurred by RSS.

5.2.2 Tail Latency vs. Throughput
To see the impact of CacheDirector on the not fully-loaded
system, we measured the performance of Metron with and
without CacheDirector for different loads. Fig. 15 illustrates
the data points and fitted curves for this experiment. The

10

fitted curves are defined as piecewise functions, wherein the
lower (Throughput < 37 Gbps) and higher (Throughput ≥ 37
Gbps) parts of data points are fitted to linear and quadratic
functions, respectively. The results show that our technique
slightly shifts the knee of the tail latency vs. throughput
curve, which means CacheDirector would still be beneficial
while the system experiences a moderate load (i.e., around
50 Gbps) and before tail latency starts growing dramatically.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80

Ta
il

La
te

nc
y

(9
9th

) (
µ

s)

Throughput (Gbps)

DPDK-Fit (R2=0.995,0.993)
DPDK
CacheDirector-Fit (R2=0.991,0.996)
CacheDirector

DPDK =
Fit

⎧
⎨
⎩
 15.61 + 0.2379X
 1977 - 95.18X + 1.158X2

 X<37
 X≥37

CacheDirector =
Fit

⎧
⎨
⎩
 15.78 + 0.2415X
 2154 - 102X + 1.216X2

 X<37
 X≥37

Figure 15. Tail latency (99th percentile) vs. Throughput for a
stateful service chain (Router-NAPT-LB) running on 8 cores
while sending mixed-size packets at different rates with HW
offloading using FlowDirector. The values of tail latency
include loopback cost. The data points show the median of
50 runs. The solid lines represent the fitted curves to the
measurement points.

5.3 Summary
In this section, we showed that using CacheDirector brings
slice-aware memory management to packet processing.
Doing so can reduce the average latency by up to ∼6% (14 µs)
and more importantly tail latencies (90-99th percentiles) by
up to ∼21.5% (119 µs) for NFV systems. By doing so, we
improved the performance of a highly tuned NFV platform
that works at the speed of the underlying networking
hardware. The reasons for this improvement are as follows:
CacheDirector places the packet header into the

appropriate LLC slice. As a result, any time the CPU requires
the packet header when it is not present in the L1 and L2
caches but available in LLC, the CPU stalls for fewer cycles
waiting for the packet header to be brought into the lower
cache levels; therefore, the CPU can process packets faster,
which results in more frequent fetching of enqueued packets.
Hence, the queuing delay is reduced. CacheDirector offers
NFV service providers a tangible gain as they can utilize their
system’s capacity more efficiently, while providing a more
predictable response-time to their customers and reducing
their SLO violations due to reduced tail latencies.

6 Porting to Newer CPU Architectures
Slice-aware memory management is architecture
dependent and finding the mapping requires using the
uncore performance monitoring unit. However, this unit
is likely to be available in most of the current and future
Intel processors. In addition, being architecture dependant is
a typical requirement for achieving high performance, as any
code optimization routinely results in processor dependent
code. For instance, any high-quality compiler is aware of the
instruction pipeline’s details such as depth, cache sizes, and
shadow registers, which might change for different versions
of micro-architectures.
We have run most of our experiments on the Haswell

architecture, but to prove the portability and feasibility of
our solution on newer architectures, we adjusted our code to
be compatible with the Skylake architecture. Two doctoral
students accomplished this task in two days. Compared to
Haswell, there are some important changes in Skylake, some
of which affect the cache hierarchy [13, 14, 47, 48, 78]: Firstly,
the size of L2 cache is quadrupled to 1MB (extended L2 by
adding 768 kB cache on the outside of the core) and the size
of LLC slices is reduced to 1.375MB. This can be interpreted
as some parts of the shared LLC becoming private to each
CPU core. Secondly, the ring-based interconnect is replaced
by a mesh interconnect. Additionally, the number of slices is
not necessarily equal to the number of cores. There are three
layouts for CPUs, which have either 10, 18, or 28 slices. Our
CPU (Intel Xeon Gold 6134) has 8 cores and 18 slices. Finally,
the connection between L2 & LLC is changed to a “non-
inclusive” one and LLC acts like a victim cache for L2, hence
cache lines will be loaded directly into L2 without being
loaded into LLC. When a cache line is evicted from L2, it will
be moved to LLC if it is expected to be reused. Later, the cache
line can be re-read from LLC to L2, while still remaining
in LLC. Despite the shift toward non-inclusiveness, it is
important to note that this does not affect DDIO, thus packets
are still loaded in LLC, rather than L2 [28, 67]. Therefore,
CacheDirector is still expected to be beneficial, but with
lower improvements – as the size of L2 has been increased.
Fig. 16 shows the access time differences from core 0 to

different slices for the mentioned Skylake CPU, as measured
by the same approach discussed in (§2.2) through polling
without knowing the hash function. The results have some
correlation with those measured for Haswell (see Fig. 5a).
The access time difference is again present. However, as the
number of slices is more than the number of cores, there are
multiple preferable slices for each core, as shown in Table 4.
Our proposed memory management scheme is still

expected to be effective when the working dataset is bigger
than L2 and smaller than a LLC slice. Furthermore, porting
our code to a newer architecture provided us with the
opportunity to study slice isolation enabled by slice-aware
memory management and comparing it with way isolation

11

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
um

be
r o

f C
yc

le
s

Slice Number

Figure 16. Access time to different slices from core 0 in
Xeon-Gold-6134 (Skylake).

Table 4. Preferable slices for each core in Intel Xeon Gold
6134.Ci and S j represents ith core and jth slice, respectively.

Core C0 C1 C2 C3 C4 C5 C6 C7

Primary slice S0 S4 S8 S12 S10 S14 S3 S15
Secondary slices S2, S6 S1 S11 S13 S7, S9 S16 S5 S17

introduced by Cache Allocation Technology (CAT) [51],
which will be discussed in the next section.

7 Slice-aware Cache Isolation vs. CAT
Intel recently introduced a technology called CAT, which
provides greater control over LLC to address concerns
regarding unfair usage of LLC. CAT enables cache isolation
and prioritization of applications by allocating different
cache ways to different applications. By doing so, the noisy
neighbor effect can bemitigated to some extent, as allocating a
limited number of ways solves the problem of overutilization
by an application. However, the effective LLC bandwidth still
remains a bottleneck as the noisy neighbor might access LLC
more frequently.

Slice-aware memory management can be used to provide
cache isolation, or cache partitioning, by allocating different
slices rather than cache ways. To compare this approach
with CAT, we designed an experiment in which we have two
simple applications similar to that discussed in (§3)∗. One
application acts as a noisy neighbor and we measure the
execution time of the other application in different scenarios.
Fig. 17 shows these results.

NoCAT describes the scenario where both noisy neighbor
and our application use normal memory allocation when
CAT is disabled, i.e., both use all available LLC ways (11
ways).

∗We allocate 2MB, which corresponds to three-fourths of the size of
each slice plus the size of L2 in Intel Xeon Gold 6134.

 0

 0.5

 1

 1.5

 2

NoCAT 2W Isolated Slice-0 Isolated

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e(

s)

Scenario

Read
Write

≈ 11.5%

≈ 11.8%

Figure 17. Average execution time for the main application
in different scenarios for read and write operations. “W”
refers to ways. Cross hatch and solid patterns represents
read and write operations, respectively. Numbers show the
speedup achieved by slice isolation in comparison with way
isolation, i.e., CAT. The measurements were run on a Xeon-
Gold-6134 (Skylake) processor.

2W Isolated describes a scenario in which the main
application only uses two ways (2

11 ≈ 18% of LLC) and the
rest of the ways are used by the noisy neighbor.

Slice-0 Isolated describes a scenario in which the main
application uses slice 0 (1

18 ≈ 5% of LLC). The noisy neighbor
is still present and it pollutes all LLC slices except slice 0. It
is important to note that we only isolate the application’s
working set, thus isolating the code section (instructions and
local variables) is not considered in our experiment. However,
it would be possible to realize full slice isolation through an
abstraction layer (e.g., slice-aware hypervisor) or future H/W
support.

Comparing the results of these scenarios, we conclude
that slice-aware memory management performs ∼11% better
than CAT. Consequently, systems that are not equipped
with CAT can use slice-aware memory management,
which can provide them the same functionality, but at
the cost of memory fragmentation. Moreover, even CAT-
enabled systems can benefit from the slice-aware memory
management, as it will result in better performance. We
believe that these results could motivate vendors to consider
extending CAT by making it possible to isolate slices rather
than just ways. However, this might require a more thorough
evaluation of CAT and slice isolation, which can be done
by comparing the performance of known benchmarks (e.g.,
SPEC CPU benchmarks) for both techniques. Additionally,
slice isolation can also be employed in hypervisors (e.g.,
KVM) to allocate different LLC slices to different virtual
machines. These remain as our future work.

12

8 Discussion
This section elaborates limitations and other aspects of
CacheDirector and slice-aware memory management.

Development effort. Slice-aware memory management is
not as complex as it may sound. We developed a library
(600 lines of code) which can be used by any application
to realize slice-awareness. Implementing CacheDirector in
DPDK required less than 200 additional lines of code∗.

Suggestions for new CPU architectural features. To use
slice-aware memory management and CacheDirector for
other processors, one must first determine the mapping
between different physical addresses and LLC slices.
Therefore, the hash function of the processor should
be known or the processor should be equipped with a
uncore performance monitoring unit (such as CBo or
CHA). Moreover, Intel and other vendors might consider
introducing a new processor mode in which the hash
function is known, the granularity of chunks are increased
(e.g., 4 kB pages), or is even programmable. Considering the
need for hardware changes in the future data centers [57], we
hope this paper will encourage hardware vendors to adopt
one or more of these alternatives.

NIC driver support. CacheDirector is implemented in
DPDK for the MLX5 driver and does not presently support
Vectorized PMD. However, we are planning to extend
CacheDirector to support additional NICs.

Noisy neighbor effect. Since LLC is shared among the
different cores, having a noisy neighbor degrades
performance. In CacheDirector we force part of our data
to a single LLC slice, hence the degradation may be more
visible than when we are not slice-aware. The noisy neighbor
effect is not limited to another application running on a
different core. For instance, when DuT is receiving packets
with a size of 1500 B, DDIO technology loads the whole
packet (of ∼24 cache lines) into different LLC slices, hence
previously enqueued packets can be evicted from the LLC
when LoadGen sends at 100 Gbps, despite the fact that
packets were sent to the LLC by DDIO. This can also happen
without CacheDirector, but the probability of eviction in LLC
when using CacheDirector is proportional to 1

Number of LLC slice

which is greater than the normal case, i.e., 1
(Number of LLC slice)2 .

In practice, one can use multiple slices for memory allocation
as §2.2 showed that LLC access times are bimodal, which
can result in a lower probability of LLC eviction.

Dealing with data larger than 64 B. Since the purpose
of the current hash function in Intel’s Xeon processors
is to increase LLC bandwidth by uniformly distributing

∗The source code is available at: https://github.com/aliireza/slice-aware

LLC requests among different slices, the mapping between
physical memory and slices changes for almost every cache
line (64 B), making it difficult to apply the same technique
to certain applications. However, it would still be possible
to map larger data to the appropriate LLC slice(s) by
using a linked-list and scattering the data. Evaluating these
techniques will remains as our future work.

The impact of H/W prefetching. Current H/W prefetchers
are designed for contiguous memory allocation schemes,
wherein L2 prefetchers such as L2 Hardware Prefetcher and
L2 Adjacent Cache Line Prefetcher prefetch only the next
cache lines into the L2 cache [74]. Therefore, using slice-
aware memory management might not be always beneficial
for some applications which have a contiguous memory
access pattern. However, there are many applications which
have non-contiguous access patterns (e.g., NFV service
chains and key-value stores) or some that do not benefit
from it [32]. Introducing programmable H/W prefetchers in
general purpose processors could make slice-aware memory
management even more efficient.

Extra consideration for slice-awareness. Employing slice-
aware memory management requires some consideration,
as it might cause performance degradation. In short, slice-
aware memory management partitions LLC similar to
CAT but with a granularity of a slice, which means an
application is limited to a smaller portion of LLC, but with
faster access, i.e., lower latency. In addition, slice-aware
memory management works based on physical address,
which can limit the available memory space (similar to
page coloring). Therefore, developers should be careful not
to create a slice imbalance. It is also important to note
that the most appropriate LLC slice is not always the one
with the lowest access latency. For instance, multi-threaded
applications that have shared data among multiple cores
should find a compromise placement and then use the LLC
slice(s) which are beneficial for all cores. Additionally, some
applications might be affected by thread-migration policies
in the operating system. This can be handled by limiting
applications to specific cores (e.g., using cgroups-cpusets)
or monitoring/migration data (similar to the H/W features
suggested by [23, 45]). Furthermore, applications which
only use slice-aware memory management for the “hot”
data due to their very large working set should employ
monitoring/migration techniques to deal with variability
of hot data. Taking into account these considerations,
there might be additional applications beyond NFV (e.g.,
slab coloring and compiler/linker optimization), which
can benefit from slice-aware memory management. The
proper evaluation for generality of our proposed memory
management scheme remains as our future work.

13

https://github.com/aliireza/slice-aware

9 Related Work
This section discuss other efforts relevant to our work.

Non-Uniform Cache Architecture. Increasing the size of
cache leads to non-uniform cache architectures (NUCA), in
which different cache portions are accessible with different
access latency based on their distance to specific CPU cores.
NUCA has been addressed in the literature in different
contexts. Several works have proposed hardware-based
strategies – mainly by introducing modifications to the
CPU architecture – such as data migration, data placement,
and data replication [5, 6, 10, 23, 35, 65, 77]. Some other
works focus on software-based strategies, such as data
layout optimization [41, 87] or compiler optimization [7,
11, 30, 31], to exploit NUCA characteristics to improve
performance. However, these works mostly overlook the
cache organization of currently available CPUs. Additionally,
they are based on assumptions, some of which are not
valid for current CPU micro-architectures (e.g., ignoring
addressing schemes used in current Intel CPUs), and they
are based on simulation. To the best of our knowledge, our
work is the first to exploit the NUCA characteristics of the
latest Intel CPUs to improve the performance of applications.

Intel LLC Complex Addressing. Others have tried to
reverse engineer the Intel LLC Complex Addressing hash
function [1, 27, 39, 42, 61, 84]. These efforts were mainly
conducted by the researchers in the security community
who discussed how understanding this addressing makes
different classes of attacks (e.g., sandbox and Prime+Probe)
practical. To the best of our knowledge, our work is the only
one that takes advantage of knowledge of this addressing
to improve the system’s performance. We are also the only
work to perform precise measurements to evaluate the access
time to different LLC slices and show the potential gain that
slice-aware memory management enables.

Cache-aware Memory Management. Others have
addressed cache-aware memory allocation and memory
management with the goal of delivering predictable cache
behavior and improving system performance [46]. Many
of these works (e.g., [24, 36, 38, 40, 66]) proposed software
techniques for cache-aware memory allocation. These works
mainly suffer from being limited to a traditional physical
addressing scheme where the cache is physically addressed
and/or based on application profiling without considering
Intel’s LLC Complex Addressing. In contrast, other works
(e.g., [60, 85]) extended traditional page coloring to be
applicable to Intel’s multi-core architectures that involve
a hash-based LLC addressing scheme. However, these works
will not be as effective as before on newer architectures (e.g.,
Haswell and Skylake), as the mapping between LLC slices
and physical addresses changes at a finer granularity than 4k-
pages. Furthermore, there are a series of works that proposed
[6, 51, 75, 76] or exploited [17, 63, 64, 81–83] hardware-based

cache partitioning to better use the LLC in order to improve
performance. To the best of our knowledge, none of these
works considered LLC slice-aware memory management, or
slice-aware cache partitioning, and we are the only work
that takes advantage of knowledge of Intel’s LLC Complex
Addressing for memory management and allocation.

Fast Packet Processing. NFV is a transition toward
deploying network functions on general purpose
hardware as opposed to using specialized physical boxes. To
achieve high throughput and low latency with commodity
hardware, NFV applications mostly employ user-space
packet processing frameworks to eliminate the costly
traditional kernel-based network stack [15, 21, 52, 56]. In
addition to user-space I/O frameworks, there have also been
efforts to optimize the kernel network stack [18, 22, 59].
Additionally, several efforts have been made to improve NFV
application performance when running over user-space I/O
frameworks [8, 16, 33, 34, 62, 68, 86]. Furthermore, there are
a limited number of works that employed CAT to mitigate
noisy neighbor effect and improve NFV performance [70, 72,
73]. Our work can be seen as complementary to these works
since none of them considered LLC slice-aware memory
management to improve performance.

10 Conclusion
We have proposed slice-aware memory management scheme
which exploits the latency differences in accessing different
LLC slices, aka NUCA. We also proposed CacheDirector, a
network I/O solution which utilizes slice-aware memory
management. CacheDirector puts the packet’s header in
the slice closest to the CPU core that is going to process
the packet. By doing so, CacheDirector increases efficiency
and performance, while reducing tail latencies over the
state-of-the-art. Moreover, we investigated other potential
use cases for our proposed memory management scheme,
such as cache isolation and potential improvements in key-
value stores. This work conveys a message to the research
community that with a little extra attention to memory
management and by taking advantage of the LLC’s Complex
Addressing, it is possible to boost application performance.

Acknowledgments
We thank our shepherd, Adam Belay, and EuroSys reviewers
for their insightful comments and suggestions. Furthermore,
we are grateful to Georgios Katsikas & Tom Barbette for
helping us prepare the testbed. This work was partially
supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation. The work was also funded by the
Swedish Foundation for Strategic research (SSF). This project
has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 770889).

14

References
[1] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar. 2015.

Systematic Reverse Engineering of Cache Slice Selection in Intel
Processors. IACR Cryptology ePrint Archive 2015 (2015), 690.

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload Analysis of a Large-scale Key-value Store.
In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’12). ACM, New York, NY, USA, 53–64. https:
//doi.org/10.1145/2254756.2254766

[3] Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast Userspace
Packet Processing. In Proceedings of the Eleventh ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS
’15). IEEE Computer Society, Washington, DC, USA, 5–16.

[4] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy
Ranganathan. 2017. Attack of the Killer Microseconds. Commun.
ACM 60, 4 (March 2017), 48–54. https://doi.org/10.1145/3015146

[5] Sandro Bartolini, Pierfrancesco Foglia, and CosimoAntonio Prete. 2018.
Exploring the relationship between architectures and management
policies in the design of NUCA-based chip multicore systems. Future
Generation Computer Systems 78 (2018), 481 – 501. https://doi.org/10.
1016/j.future.2017.06.001

[6] N. Beckmann and D. Sanchez. 2013. Jigsaw: Scalable software-defined
caches. In Proceedings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques. 213–224. https://doi.org/10.
1109/PACT.2013.6618818

[7] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J.
Ramanujam, Atanas Rountev, and P. Sadayappan. 2008. Automatic
Transformations for Communication-Minimized Parallelization and
Locality Optimization in the Polyhedral Model. In Compiler Con-
struction, Laurie Hendren (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 132–146.

[8] Anat Bremler-Barr, Yotam Harchol, and David Hay. 2015. OpenBox:
Enabling Innovation in Middlebox Applications. In Proceedings of
the 2015 ACM SIGCOMMWorkshop on Hot Topics in Middleboxes and
Network Function Virtualization (HotMiddlebox ’15). ACM, New York,
NY, USA, 67–72. https://doi.org/10.1145/2785989.2785992

[9] A. Chakravarty, K. Schmidtke, S. Giridharan, J. Huang, and V. Zeng.
2016. 100G CWDM4 SMF optical interconnects for facebook data
centers. In 2016 Conference on Lasers and Electro-Optics (CLEO). 1–2.

[10] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. 2003. Distance
associativity for high-performance energy-efficient non-uniform cache
architectures. In Proceedings. 36th Annual IEEE/ACM International
Symposium on Microarchitecture, 2003. MICRO-36. 55–66. https://doi.
org/10.1109/MICRO.2003.1253183

[11] Chen-Ling Chou and R. Marculescu. 2008. Contention-aware appli-
cation mapping for Network-on-Chip communication architectures.
In 2008 IEEE International Conference on Computer Design. 164–169.
https://doi.org/10.1109/ICCD.2008.4751856

[12] Intel Coorporation. 2016. Intel 64 and IA-32 architectures
optimization reference manual. https://www.intel.com/
content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-optimization-manual.pdf. (2016). Online;
accessed 5 May 2018.

[13] Ian Cutress. 2017. Intel Announces Skylake-X: Bringing 18-Core HCC
Silicon to Consumers for $1999. https://bit.ly/2WpZZYx. (May 2017).
Online; accessed 2019-01-10.

[14] Ian Cutress. 2017. The Intel Skylake-X Review: Core i9 7900X, i7
7820X and i7 7800X Tested. https://www.anandtech.com/show/11550/
the-intel-skylakex-review-core-i9-7900x-i7-7820x-and-i7-7800x-tested/
4. (June 2017). Online; accessed 2019-01-10.

[15] Data Plane Development Kit (DPDK). 2018. https://dpdk.org. (2018).
Online; accessed 2018-06-15.

[16] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun,
Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and
Sylvia Ratnasamy. 2009. RouteBricks: Exploiting Parallelism to Scale
Software Routers. In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles (SOSP ’09). ACM, New York, NY, USA,
15–28. https://doi.org/10.1145/1629575.1629578

[17] N. El-Sayed, A. Mukkara, P. A. Tsai, H. Kasture, X. Ma, and D. Sanchez.
2018. KPart: A Hybrid Cache Partitioning-Sharing Technique for
Commodity Multicores. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 104–117. https://doi.org/
10.1109/HPCA.2018.00019

[18] eXpress Data Path (XDP). 2016. https://www.iovisor.org/technology/
xdp. (2016).

[19] S. Gallenmüller, D. Scholz, F. Wohlfart, Q. Scheitle, P. Emmerich, and G.
Carle. 2018. High-performance packet processing and measurements.
In 2018 10th International Conference on Communication Systems
Networks (COMSNETS). 1–8. https://doi.org/10.1109/COMSNETS.2018.
8328173

[20] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and
Peter J. Weinberger. 1994. Quickly Generating Billion-record Synthetic
Databases. In Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’94). ACM, New York,
NY, USA, 243–252. https://doi.org/10.1145/191839.191886

[21] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010.
PacketShader: A GPU-accelerated Software Router. SIGCOMMComput.
Commun. Rev. 40, 4 (Aug. 2010), 195–206. https://doi.org/10.1145/
1851275.1851207

[22] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy.
2012. MegaPipe: A New Programming Interface for Scalable
Network I/O. In Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12). USENIX,
Hollywood, CA, 135–148. https://www.usenix.org/conference/osdi12/
technical-sessions/presentation/han

[23] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia
Ailamaki. 2009. Reactive NUCA: Near-optimal Block Placement and
Replication in Distributed Caches. In Proceedings of the 36th Annual
International Symposium on Computer Architecture (ISCA ’09). ACM,
New York, NY, USA, 184–195. https://doi.org/10.1145/1555754.1555779

[24] J. Herter, P. Backes, F. Haupenthal, and J. Reineke. 2011. CAMA: A
Predictable Cache-Aware Memory Allocator. In 2011 23rd Euromicro
Conference on Real-Time Systems. 23–32. https://doi.org/10.1109/
ECRTS.2011.11

[25] How to translate virtual to physical addresses through
/proc/pid/pagemap. 2014. http://fivelinesofcode.blogspot.se/
2014/03/how-to-translate-virtual-to-physical.html. (2014). Online;
accessed 5 May 2018.

[26] Ted Hudek. 2017. Introduction to Receive Side Scaling.
https://docs.microsoft.com/en-us/windows-hardware/drivers/
network/introduction-to-receive-side-scaling. (20 04 2017). Online;
accessed 2018-06-09.

[27] R. Hund, C. Willems, and T. Holz. 2013. Practical Timing Side Channel
Attacks against Kernel Space ASLR. In 2013 IEEE Symposium on Security
and Privacy. 191–205. https://doi.org/10.1109/SP.2013.23

[28] Intel. 2017. Intel Xeon Processor Scalable Memory
Family Uncore Performance Monitoring. https://www.
intel.com/content/www/us/en/processors/xeon/scalable/
xeon-scalable-uncore-performance-monitoring-manual.html.
(July 2017). Online; accessed 2019-01-25.

[29] Intel Ethernet Flow Director and Memcached Performance. 2014.
https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/intel-ethernet-flow-director.pdf. (2014). Online;
accessed 2018-05-22.

[30] M. Kandemir, J. Ramanujam, A. Choudhary, and P. Banerjee. 1999.
A Loop Transformation Algorithm Based on Explicit Data Layout

15

https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1145/3015146
https://doi.org/10.1016/j.future.2017.06.001
https://doi.org/10.1016/j.future.2017.06.001
https://doi.org/10.1109/PACT.2013.6618818
https://doi.org/10.1109/PACT.2013.6618818
https://doi.org/10.1145/2785989.2785992
https://doi.org/10.1109/MICRO.2003.1253183
https://doi.org/10.1109/MICRO.2003.1253183
https://doi.org/10.1109/ICCD.2008.4751856
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://bit.ly/2WpZZYx
https://www.anandtech.com/show/11550/the-intel-skylakex-review-core-i9-7900x-i7-7820x-and-i7-7800x-tested/4
https://www.anandtech.com/show/11550/the-intel-skylakex-review-core-i9-7900x-i7-7820x-and-i7-7800x-tested/4
https://www.anandtech.com/show/11550/the-intel-skylakex-review-core-i9-7900x-i7-7820x-and-i7-7800x-tested/4
https://dpdk.org
https://doi.org/10.1145/1629575.1629578
https://doi.org/10.1109/HPCA.2018.00019
https://doi.org/10.1109/HPCA.2018.00019
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp
https://doi.org/10.1109/COMSNETS.2018.8328173
https://doi.org/10.1109/COMSNETS.2018.8328173
https://doi.org/10.1145/191839.191886
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1145/1851275.1851207
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/han
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/han
https://doi.org/10.1145/1555754.1555779
https://doi.org/10.1109/ECRTS.2011.11
https://doi.org/10.1109/ECRTS.2011.11
http://fivelinesofcode.blogspot.se/2014/03/how-to-translate-virtual-to-physical.html
http://fivelinesofcode.blogspot.se/2014/03/how-to-translate-virtual-to-physical.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://doi.org/10.1109/SP.2013.23
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf

Representation for Optimizing Locality. In Languages and Compilers
for Parallel Computing, Siddhartha Chatterjee, Jan F. Prins, Larry Carter,
Jeanne Ferrante, Zhiyuan Li, David Sehr, and Pen-Chung Yew (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 34–50.

[31] M. Kandemir, Y. Zhang, J. Liu, and T. Yemliha. 2011. Neighborhood-
aware data locality optimization for NoC-based multicores. In
International Symposium on Code Generation and Optimization (CGO
2011). 191–200. https://doi.org/10.1109/CGO.2011.5764687

[32] Hui Kang and Jennifer L. Wong. 2013. To Hardware Prefetch or Not
to Prefetch?: A Virtualized Environment Study and Core Binding
Approach. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13). ACM, New York, NY, USA, 357–368. https:
//doi.org/10.1145/2451116.2451155

[33] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert,
and Gerald Q. Maguire Jr. 2018. Metron: NFV Service Chains at the
True Speed of the Underlying Hardware. In 15th USENIX Conference
on Networked Systems Design and Implementation (NSDI 18) (NSDI’18).
USENIX Association, Renton, WA, 171–186. https://www.usenix.org/
system/files/conference/nsdi18/nsdi18-katsikas.pdf

[34] Georgios P. Katsikas, Marcel Enguehard, Maciej Kuźniar, Gerald Q.
Maguire Jr, and Dejan Kostić. 2016. SNF: synthesizing high
performance NFV service chains. PeerJ Computer Science 2 (Nov. 2016),
e98. https://doi.org/10.7717/peerj-cs.98

[35] Changkyu Kim, Doug Burger, and Stephen W. Keckler. 2002. An
Adaptive, Non-uniform Cache Structure for Wire-delay Dominated
On-chip Caches. SIGARCH Comput. Archit. News 30, 5 (Oct. 2002),
211–222. https://doi.org/10.1145/635506.605420

[36] H. Kim, A. Kandhalu, and R. Rajkumar. 2013. A Coordinated Approach
for Practical OS-Level Cache Management in Multi-core Real-Time
Systems. In 2013 25th Euromicro Conference on Real-Time Systems. 80–
89. https://doi.org/10.1109/ECRTS.2013.19

[37] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael
Kaminsky. 2014. MICA: A Holistic Approach to Fast In-Memory Key-
Value Storage. In 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14). USENIX Association, Seattle, WA, 429–
444. https://www.usenix.org/conference/nsdi14/technical-sessions/
presentation/lim

[38] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang,
and P. Sadayappan. 2008. Gaining insights into multicore cache
partitioning: Bridging the gap between simulation and real systems. In
2008 IEEE 14th International Symposium on High Performance Computer
Architecture. 367–378. https://doi.org/10.1109/HPCA.2008.4658653

[39] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. 2015. Last-Level
Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy. 605–622. https://doi.org/10.1109/SP.2015.43

[40] L. Liu, Y. Li, C. Ding, H. Yang, and C. Wu. 2016. Rethinking Memory
Management in Modern Operating System: Horizontal, Vertical or
Random? IEEE Trans. Comput. 65, 6 (June 2016), 1921–1935. https:
//doi.org/10.1109/TC.2015.2462813

[41] Q. Lu, C. Alias, U. Bondhugula, T. Henretty, S. Krishnamoorthy, J.
Ramanujam, A. Rountev, P. Sadayappan, Y. Chen, H. Lin, and T. Ngai.
2009. Data Layout Transformation for Enhancing Data Locality on
NUCA Chip Multiprocessors. In 2009 18th International Conference
on Parallel Architectures and Compilation Techniques. 348–357. https:
//doi.org/10.1109/PACT.2009.36

[42] Clémentine Maurice, Nicolas Scouarnec, Christoph Neumann, Olivier
Heen, and Aurélien Francillon. 2015. Reverse Engineering Intel Last-
Level Cache Complex Addressing Using Performance Counters. In
Proceedings of the 18th International Symposium on Research in Attacks,
Intrusions, and Defenses - Volume 9404 (RAID 2015). Springer-Verlag
New York, Inc., New York, NY, USA, 48–65. https://doi.org/10.1007/
978-3-319-26362-5_3

[43] Sally A. McKee. 2004. Reflections on the Memory Wall. In Proceedings
of the 1st Conference on Computing Frontiers (CF ’04). ACM, New York,
NY, USA, 162–. https://doi.org/10.1145/977091.977115

[44] Mellanox. 2017. Mellanox DPDK - Quick Start Guide.
http://www.mellanox.com/related-docs/prod_software/MLNX_
DPDK_Quick_Start_Guide_v16.11_1.5.pdf. (2017). Online; accessed
2019-01-10.

[45] J. Merino, V. Puente, and J. A. Gregorio. 2010. ESP-NUCA: A low-
cost adaptive Non-Uniform Cache Architecture. In HPCA - 16 2010
The Sixteenth International Symposium on High-Performance Computer
Architecture. 1–10. https://doi.org/10.1109/HPCA.2010.5416641

[46] Sparsh Mittal. 2017. A Survey of Techniques for Cache Partitioning in
Multicore Processors. ACM Comput. Surv. 50, 2, Article 27 (May 2017),
39 pages. https://doi.org/10.1145/3062394

[47] Timothy Prickett Morgan. 2017. Drilling Down Into The Xeon
Skyalke Architecture. https://www.nextplatform.com/2017/08/04/
drilling-xeon-skylake-architecture/. (August 2017). Online; accessed
2019-01-10.

[48] David Mulnix. 2017. Intel Xeon Processor Scalable Family
Technical Overview. https://software.intel.com/en-us/articles/
intel-xeon-processor-scalable-family-technical-overview. (Sep 2017).
Online; accessed 2018-09-22.

[49] NetApp. 2017. What is the potential impact of PAUSE frames on a
network connection? https://ntap.com/2RpAx1Q . (Nov 2017). Online;
accessed 2019-01-10.

[50] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W. Moore. 2018. Understanding
PCIe Performance for End Host Networking. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’18). ACM, New York, NY, USA, 327–341. https://doi.org/
10.1145/3230543.3230560

[51] Khang Nguyen. 2016. Introduction to Cache Allocation Technology in
the Intel Xeon Processor E5 v4 Family. https://software.intel.com/
en-us/articles/introduction-to-cache-allocation-technology. (Feb
2016). Online; accessed 2018-05-27.

[52] OpenOnload. 2018. http://www.openonload.org. (2018).
[53] Intel Data Direct I/O Technology Overview. 2012. https:

//www.intel.com/content/dam/www/public/us/en/documents/
white-papers/data-direct-i-o-technology-overview-paper.pdf. (2012).
Online; accessed 2018-05-22.

[54] Gabriele Paoloni. 2010. https://www.intel.com/
content/dam/www/public/us/en/documents/white-papers/
ia-32-ia-64-benchmark-code-execution-paper.pdf. Intel Corporation
(2010). Online; accessed 5 May 2018.

[55] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and
Joel Emer. 2007. Adaptive Insertion Policies for High Performance
Caching. In Proceedings of the 34th Annual International Symposium on
Computer Architecture (ISCA ’07). ACM, New York, NY, USA, 381–391.
https://doi.org/10.1145/1250662.1250709

[56] Luigi Rizzo. 2012. netmap: A Novel Framework for Fast Packet
I/O. In 2012 USENIX Annual Technical Conference (USENIX ATC 12).
USENIX Association, Boston, MA, 101–112. https://www.usenix.org/
conference/atc12/technical-sessions/presentation/rizzo

[57] A. Roozbeh, J. Soares, G. Q. Maguire, F. Wuhib, C. Padala, M.
Mahloo, D. Turull, V. Yadhav, and D. Kostić. 2018. Software-Defined
“Hardware” Infrastructures: A Survey on Enabling Technologies and
Open Research Directions. IEEE Communications Surveys Tutorials
20, 3 (thirdquarter 2018), 2454–2485. https://doi.org/10.1109/COMST.
2018.2834731

[58] Karl Rupp. 2018. 42 Years of Microprocessor Trend Data. https://www.
karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/. (15
February 2018). Online; accessed 2018-06-15.

[59] Jamal Hadi Salim, Robert Olsson, and Alexey Kuznetsov. 2001.
Beyond Softnet. In Proceedings of the 5th Annual Linux Showcase &

16

https://doi.org/10.1109/CGO.2011.5764687
https://doi.org/10.1145/2451116.2451155
https://doi.org/10.1145/2451116.2451155
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-katsikas.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-katsikas.pdf
https://doi.org/10.7717/peerj-cs.98
https://doi.org/10.1145/635506.605420
https://doi.org/10.1109/ECRTS.2013.19
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://doi.org/10.1109/HPCA.2008.4658653
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/TC.2015.2462813
https://doi.org/10.1109/TC.2015.2462813
https://doi.org/10.1109/PACT.2009.36
https://doi.org/10.1109/PACT.2009.36
https://doi.org/10.1007/978-3-319-26362-5_3
https://doi.org/10.1007/978-3-319-26362-5_3
https://doi.org/10.1145/977091.977115
http://www.mellanox.com/related-docs/prod_software/MLNX_DPDK_Quick_Start_Guide_v16.11_1.5.pdf
http://www.mellanox.com/related-docs/prod_software/MLNX_DPDK_Quick_Start_Guide_v16.11_1.5.pdf
https://doi.org/10.1109/HPCA.2010.5416641
https://doi.org/10.1145/3062394
https://www.nextplatform.com/2017/08/04/drilling-xeon-skylake-architecture/
https://www.nextplatform.com/2017/08/04/drilling-xeon-skylake-architecture/
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://ntap.com/2RpAx1Q
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3230543.3230560
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
http://www.openonload.org
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://doi.org/10.1145/1250662.1250709
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://doi.org/10.1109/COMST.2018.2834731
https://doi.org/10.1109/COMST.2018.2834731
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Conference - Volume 5 (ALS ’01). USENIX Association, Berkeley, CA,
USA. http://www.usenix.org/publications/library/proceedings/als01/
full_papers/jamal/jamal.pdf

[60] Alberto Scolari, Davide Basilio Bartolini, and Marco Domenico
Santambrogio. 2016. A Software Cache Partitioning System for Hash-
Based Caches. ACM Trans. Archit. Code Optim. 13, 4, Article 57 (Dec.
2016), 24 pages. https://doi.org/10.1145/3018113

[61] Mark Seaborn. 2015. L3 cache mapping on Sandy
Bridge CPUs. http://lackingrhoticity.blogspot.se/2015/04/
l3-cache-mapping-on-sandy-bridge-cpus.html. (2015). Online;
accessed 2018-05-09.

[62] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and
Guangyu Shi. 2012. Design and Implementation of a Consolidated
Middlebox Architecture. In Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation (NSDI’12). USENIX
Association, Berkeley, CA, USA, 24–24. http://dl.acm.org/citation.cfm?
id=2228298.2228331

[63] V. Selfa, J. Sahuquillo, L. Eeckhout, S. Petit, and M. E. Gómez. 2017.
Application Clustering Policies to Address System Fairness with Intel’s
Cache Allocation Technology. In 2017 26th International Conference
on Parallel Architectures and Compilation Techniques (PACT). 194–205.
https://doi.org/10.1109/PACT.2017.19

[64] Vicent Selfa Oliver, Julio Sahuquillo, Lieven Eeckhout, Salvador Petit,
and Maria E. Gomez. 2017. Application clustering policies to address
system fairness with Intel’s cache allocation technology. In Proceedings
of the IEEE International Conference on Parallel Architectures and
Compilation Techniques (PACT). IEEE. http://dx.doi.org/10.1109/pact.
2017.19

[65] A. Shahab, M. Zhu, A. Margaritov, and B. Grot. 2018. Farewell
My Shared LLC! A Case for Private Die-Stacked DRAM Caches for
Servers. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 559–572. https://doi.org/10.1109/MICRO.
2018.00052

[66] Timothy Sherwood, Brad Calder, and Joel Emer. 1999. Reducing Cache
Misses Using Hardware and Software Page Placement. In Proceedings
of the 13th International Conference on Supercomputing (ICS ’99). ACM,
New York, NY, USA, 155–164. https://doi.org/10.1145/305138.305189

[67] Roman Sudarikov and Patrick Lu. 2018. Hardware-Level Performance
Analysis of Platform I/O. https://dpdkprcsummit2018.sched.com/
event/EsPa/hardware-level-performance-analysis-of-platform-io.
(June 2018), 7 pages. Online; accessed 2019-01-10.

[68] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu.
2017. NFP: Enabling Network Function Parallelism in NFV. In
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’17). ACM, New York, NY, USA, 43–
56. https://doi.org/10.1145/3098822.3098826

[69] Shahriar Tajbakhsh. 2017. Understanding write-through, write-around
and write-back caching (with Python). https://bit.ly/2CUMaIE. (20
August 2017). Online; accessed 2018-06-5.

[70] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls,
Katerina Argyraki, Sylvia Ratnasamy, and Scott Shenker. 2018. ResQ:
Enabling SLOs in Network Function Virtualization. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18). USENIX Association, Renton, WA, 283–297. https://www.usenix.
org/conference/nsdi18/presentation/tootoonchian

[71] Shane Tully. 2014. Translating Virtual Addresses to Physical
Addresses in User Space. http://shanetully.com/2014/12/
translating-virtual-addresses-to-physcial-addresses-in-user-space/.
(2014). Online; accessed 5 May 2018.

[72] Paul Veitch. 2017. Cache Allocation Technology: A Telco’s NFV Noisy
Neighbor Experiments. https://software.intel.com/en-us/articles/
cache-allocation-technology-telco-nfv-noisy-neighbor-experiments.
(Aug 2017). Online; accessed 2019-01-10.

[73] P. Veitch, E. Curley, and T. Kantecki. 2017. Performance evaluation
of cache allocation technology for NFV noisy neighbor mitigation. In
2017 IEEE Conference on Network Softwarization (NetSoft). 1–5. https:
//doi.org/10.1109/NETSOFT.2017.8004214

[74] Vish Viswanathan. 2014. Disclosure of h/w prefetcher control
on some intel processors. https://software.intel.com/en-us/articles/
disclosure-of-hw-prefetcher-control-onsome-intel-processors. (2014).
Online; accessed 5 May 2018.

[75] R. Wang and L. Chen. 2014. Futility Scaling: High-Associativity Cache
Partitioning. In 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture. 356–367. https://doi.org/10.1109/MICRO.2014.46

[76] X. Wang, S. Chen, J. Setter, and J. F. Martinez. 2017. SWAP: Effective
Fine-Grain Management of Shared Last-Level Caches with Minimum
Hardware Support. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 121–132. https://doi.org/
10.1109/HPCA.2017.65

[77] Z. Wang, X. Chen, Z. Lu, and Y. Guo. 2018. Cache Access Fairness
in 3D Mesh-Based NUCA. IEEE Access 6 (2018), 42984–42996. https:
//doi.org/10.1109/ACCESS.2018.2862633

[78] WikiChip. [n. d.]. Skylake (server) - Microarchitectures - Intel. https:
//en.wikichip.org/wiki/intel/microarchitectures/skylake_(server). ([n.
d.]). Online; accessed 2019-01-10.

[79] Mellanox NIC’s Performance Report with DPDK 17.05. 2017.
http://fast.dpdk.org/doc/perf/DPDK_17_05_Mellanox_NIC_
performance_report.pdf. Mellanox Technologies (2017). Online;
accessed 5 May 2018.

[80] Henry Wong. 2013. Intel Ivy Bridge Cache Replacement Policy. http:
//blog.stuffedcow.net/2013/01/ivb-cache-replacement. (jan 2013).

[81] Yaocheng Xiang, Xiaolin Wang, Zihui Huang, Zeyu Wang, Yingwei
Luo, and ZhenlinWang. 2018. DCAPS: Dynamic Cache Allocation with
Partial Sharing. In Proceedings of the Thirteenth EuroSys Conference
(EuroSys ’18). ACM, New York, NY, USA, Article 13, 15 pages. https:
//doi.org/10.1145/3190508.3190511

[82] Cong Xu, Karthick Rajamani, Alexandre Ferreira, Wesley Felter, Juan
Rubio, and Yang Li. 2018. dCat: Dynamic Cache Management
for Efficient, Performance-sensitive Infrastructure-as-a-service. In
Proceedings of the Thirteenth EuroSys Conference (EuroSys ’18). ACM,
New York, NY, USA, Article 14, 13 pages. https://doi.org/10.1145/
3190508.3190555

[83] M. Xu, L. Thi, X. Phan, H. Y. Choi, and I. Lee. 2017. vCAT: Dynamic
Cache Management Using CAT Virtualization. In 2017 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). 211–
222. https://doi.org/10.1109/RTAS.2017.15

[84] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser.
2015. Mapping the Intel Last-Level Cache. Cryptology ePrint Archive,
Report 2015/905. (2015). https://eprint.iacr.org/2015/905.

[85] Y. Ye, R. West, Z. Cheng, and Y. Li. 2014. COLORIS: A dynamic cache
partitioning system using page coloring. In 2014 23rd International
Conference on Parallel Architecture and Compilation Techniques (PACT).
381–392. https://doi.org/10.1145/2628071.2628104

[86] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato,
Gregoire Todeschi, K.K. Ramakrishnan, and Timothy Wood. 2016.
OpenNetVM: A Platform for High Performance Network Service
Chains. In Proceedings of the 2016 Workshop on Hot Topics in
Middleboxes and Network Function Virtualization (HotMIddlebox ’16).
ACM, New York, NY, USA, 26–31. https://doi.org/2940147.2940155

[87] Y. Zhang, W. Ding, M. Kandemir, J. Liu, and O. Jang. 2011. A data
layout optimization framework for NUCA-based multicores. In 2011
44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 489–500.

17

http://www.usenix.org/publications/library/proceedings/als01/full_papers/jamal/jamal.pdf
http://www.usenix.org/publications/library/proceedings/als01/full_papers/jamal/jamal.pdf
https://doi.org/10.1145/3018113
http://lackingrhoticity.blogspot.se/2015/04/l3-cache-mapping-on-sandy-bridge-cpus.html
http://lackingrhoticity.blogspot.se/2015/04/l3-cache-mapping-on-sandy-bridge-cpus.html
http://dl.acm.org/citation.cfm?id=2228298.2228331
http://dl.acm.org/citation.cfm?id=2228298.2228331
https://doi.org/10.1109/PACT.2017.19
http://dx.doi.org/10.1109/pact.2017.19
http://dx.doi.org/10.1109/pact.2017.19
https://doi.org/10.1109/MICRO.2018.00052
https://doi.org/10.1109/MICRO.2018.00052
https://doi.org/10.1145/305138.305189
https://dpdkprcsummit2018.sched.com/event/EsPa/hardware-level-performance-analysis-of-platform-io
https://dpdkprcsummit2018.sched.com/event/EsPa/hardware-level-performance-analysis-of-platform-io
https://doi.org/10.1145/3098822.3098826
https://bit.ly/2CUMaIE
https://www.usenix.org/conference/nsdi18/presentation/tootoonchian
https://www.usenix.org/conference/nsdi18/presentation/tootoonchian
http://shanetully.com/2014/12/translating-virtual-addresses-to-physcial-addresses-in-user-space/
http://shanetully.com/2014/12/translating-virtual-addresses-to-physcial-addresses-in-user-space/
https://software.intel.com/en-us/articles/cache-allocation-technology-telco-nfv-noisy-neighbor-experiments
https://software.intel.com/en-us/articles/cache-allocation-technology-telco-nfv-noisy-neighbor-experiments
https://doi.org/10.1109/NETSOFT.2017.8004214
https://doi.org/10.1109/NETSOFT.2017.8004214
https://software. intel. com/en-us/articles/disclosure-of-hw-prefetcher-control-onsome-intel-processors
https://software. intel. com/en-us/articles/disclosure-of-hw-prefetcher-control-onsome-intel-processors
https://doi.org/10.1109/MICRO.2014.46
https://doi.org/10.1109/HPCA.2017.65
https://doi.org/10.1109/HPCA.2017.65
https://doi.org/10.1109/ACCESS.2018.2862633
https://doi.org/10.1109/ACCESS.2018.2862633
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
http://fast.dpdk.org/doc/perf/DPDK_17_05_Mellanox_NIC_performance_report.pdf
http://fast.dpdk.org/doc/perf/DPDK_17_05_Mellanox_NIC_performance_report.pdf
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement
https://doi.org/10.1145/3190508.3190511
https://doi.org/10.1145/3190508.3190511
https://doi.org/10.1145/3190508.3190555
https://doi.org/10.1145/3190508.3190555
https://doi.org/10.1109/RTAS.2017.15
https://eprint.iacr.org/2015/905
https://doi.org/10.1145/2628071.2628104
https://doi.org/2940147.2940155

	Abstract
	1 Introduction
	2 Last Level Cache (LLC)
	2.1 Mapping between Physical Addresses and Slices
	2.2 Access Time to different Slices in LLC

	3 Slice-aware Memory Management
	3.1 Applicability

	4 CacheDirector Design & Implementation
	4.1 Data Plane Development Kit
	4.2 CacheDirector

	5 Evaluation
	5.1 Simple Forwarding
	5.2 Stateful Service Chain
	5.3 Summary

	6 Porting to Newer CPU Architectures
	7 Slice-aware Cache Isolation vs. CAT
	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

