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ABSTRACT
While the current literature typically focuses on load-balancing
among multiple servers, in this paper, we demonstrate the
importance of load-balancing within a single machine (potentially
with hundreds of CPU cores). In this context, we propose a new
load-balancing technique (RSS++) that dynamically modifies the
receive side scaling (RSS) indirection table to spread the load across
the CPU cores in a more optimal way. RSS++ incurs up to 14x
lower 95th percentile tail latency and orders of magnitude fewer
packet drops compared to RSS under high CPU utilization. RSS++
allows higher CPU utilization and dynamic scaling of the number of
allocated CPU cores to accommodate the input load while avoiding
the typical 25% over-provisioning.

RSS++ has been implemented for both (i) DPDK and (ii) the
Linux kernel. Additionally, we implement a new state migration
technique which facilitates sharding and reduces contention
between CPU cores accessing per-flow data. RSS++ keeps the flow-
state by groups that can be migrated at once, leading to a 20% higher
efficiency than a state of the art shared flow table.
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• Networks→ Packet scheduling; Network resources alloca-
tion; Middle boxes / network appliances; Network servers; Packet
classification; Network control algorithms; Network design and
planning algorithms; Network experimentation.
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1 INTRODUCTION
Networking applications, such as web servers, databases, or
network functions often use multiple CPU cores to serve multiple
requests in parallel in order to meet high demands, while achieving
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low latency. Recent developments in key-value stores[9, 21, 22,
33, 39], Network Functions Virtualization (NFV)[25, 26], network
stacks[12, 19, 49, 60], and high-speed networking platforms[4, 15,
48] all advocate the use of sharding. Sharding divides resources
(e.g., CPU cores and memory) into multiple shards that process
requests in parallel, in a totally independent way. Each shard usually
maintains a segregated per-flow state; i.e., space allocated for
packets sharing the same characteristics, such as Transmission
Control Protocol (TCP) control blocks, Network Address Translator
(NAT) entries, firewall statistics, etc. This results in higher CPU
cache efficiency as sharding avoids inter-core communication.

However, sharding has a major drawback for network-driven
workloads, as the amount of work per-CPU core (hereafter simply
core) is dictated by the number of packets received by each core.
This imbalance is depicted in the first 10 seconds of Figure 1. This
figure shows the per core utilization of an 18-core server. This
server runs iPerf2 receiving 100 TCP flows over a 100Gbps link
when using sharding. If the incoming load is not balanced across the
cores, some cores will end up buffering more packets than others
and therefore exhibit higher latency. Additionally, if the overload of
a core exceeds its buffer capacity, packets will be dropped. Moreover,
these high tail latencies and packet drops occur despite the fact
that 3 cores are nearly idle, thus simply over-provisioning does not
solve the problem.

1.1 Intra-server load-balancing challenges
Appropriately dispatching packets to shards is non-trivial as
one needs to simultaneously ensure: (i) a load-balance which
guarantees that no shardwill starve and no shardwill be overloaded;
(ii) flow to core affinity is maintained, thus packets in the same
flow are served by the same shard; and (iii) aminimal amount of
per-flow state transfers between cores each time the sharding is
rearranged.
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Figure 1: CPU load per core of an iPerf2 server receiving 100
TCP flows over a 100Gbps link.
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In § 2, we review state of the art and textbook techniques
to distribute packets to each of the shards. Receive-Side Scaling
(RSS)[18] ensures flow to core affinity by hashing fields of the
packets to select a “bucket” in an indirection table, as shown in
Figure 2. Metron [25] dispatches packets to cores according to traffic
classes, while Affinity-Accept[49] re-balances new connections.
Later, § 5.4 will show those techniques are insufficient to ensure
fairness between the shards. Sprayer [55] and RPCValet [8] use near-
random and purely load-aware dispatching respectively to ensure
greater fairness. Unfortunately, as shown in § 5.5 those methods
introduce high packet reordering and do not cope well with any
flow-based processing (e.g., on top of TCP) or even read-mostly
network processing, such as a NAT.
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Figure 2: RSS load-balancing scheme.

1.2 Research contributions
Our technique, called RSS++, solves the packet dispatching problem
by migrating the RSS indirection buckets between shards based
upon the output of an optimization algorithm. RSS++ tracks
the number of packets received by each RSS bucket. Then,
knowing which buckets send packets to each core, RSS++ computes
how much each bucket contributes to each core’s load. The
RSS indirection table is then modified to move excessive load
from overloaded to underloaded cores. When needed, RSS++ can
dynamically scale the number of cores, by moving buckets to a
new core or reallocating buckets of a core scheduled for removal.
By keeping per-bucket flow tables, when a bucket is re-assigned
to another core, all of the corresponding flows can be migrated at
once. To prevent packet reordering during migration, RSS++ tracks
when a core has emptied its queue and then releases its associated
per-flow state.

To the best of our knowledge, RSS++ is the first to achieve
stateful near-perfect intra-server load-balancing, even at the speed
of 100Gbps links. It does so by enforcing flow to core affinity,
minimizing & optimizing per-flow state transfers between cores,
and exploiting the well established hardware-based load-balancing
scheme of RSS present in commodity Network Interface Cards
(NICs). Thanks to RSS, the complexity of our scheme is only
proportional to the number of cores, and not to the number of
flows. We only had to devise schemes for bypassing the update rate
limits in some of the existing hardware. § 3 explains RSS++ in more
detail.

We implement RSS++ usingDPDK [34], a framework that enables
fast I/O directly in user-level, therefore it is particularly well-suited
to sharding as it does not need privileged system calls. We also
implement the RSS++ load-balancing technique as a user-level
daemon, working with today’s Linux kernels. § 4 explains these two
implementations in more detail and proposes a few small changes
to the Linux kernel to allow flow migration.

In Figures 1 and 3, at 11 swe launch the RSS++ user-level daemon
(with automatic scaling disabled) on a Linux system∗. RSS++ has
several positive effects on the iPerf2 server: (i) re-balances the load
evenly among the available cores as shown by the heatmap in
Figure 1 and (ii) reduces the average Round Trip Time (RTT) by
~30%, while reducing the standard deviation by a factor of 5, thereby
tightly bounding tail latency (by 4.5x) as shown by the candlesticks
in Figure 3. At 21 s we activate RSS++ automatic scaling which
releases some cores by compacting the load, while incurring the
same predictable latency. As a result, 6 cores could be allocated to
other applications. Note that the bandwidth remains constant at
93Gbps during the whole test.
Why RSS++?: RSS can provide good load-balancing when both
of the following requirements are met: (i) input flows exhibit
high entropy in the values of the header fields being hashed by
the NIC (e.g., 4-tuple), thus flows are well distributed among the
available cores and (ii) input flows are of equivalent sizes and
duration, thus posing similar processing requirements. Although
such workloads might exist, typical Internet workloads follow the
"mice and elephants" pattern[13, 32] (this pattern is also present in
our campus trace). Even in a perfectly balanced situation, adding
or removing cores without RSS++ will result in flows being
continuously (at every balancing decision) migrated without their
state, hence dramatically deteriorating TCP performance or losing
state in a sharding context. §5 shows how quickly RSS++ balances
various workloads (stemming from real traces) with large numbers
of concurrent flows (80K) of various sizes.

0 5 10 15 20 25 30
Time (s)

0

1000

2000

3000

RT
T 

(µ
s)

RSS
RSS++

(Autoscale off)
RSS++

(Autoscale on)

Figure 3: iPerf2 RTT in µs over time for 3 runs of the
experiment shown in Figure 1. RSS++ efficiently uses CPUs,
while bounding tail latency (black circles corresponding to
RTT outliers).

2 INTRA-SERVER LOAD-BALANCING
TECHNIQUES

Multi-core computers achieve high performance by concurrently
processing network traffic. However, traffic processing must be
suitably shared among cores. In this section, we review intra-server
load-balancing techniques, then compare them using multiple
benchmarks in § 5. Other techniques will be discussed in § 6.

Perhaps the simplest scheme is to have one or more cores
read packets from a device and put these packets into a software
queue. We refer to this as software queuing in Table 1 and
Figure 4a. Subsequently, multiple processing cores take packets

∗The iPerf2 modifications to enable RSS++ and sharding are described in §4 while
the testbed is further described in §5.
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Figure 4: Load-balancing techniques.
from this software queue. These inter-core transfers increase
latency. Moreover, assigning core(s) to packet reception reduces
the number of cores available for actual processing.

One way to realize flow to core affinity with software queuing
is to have the dispatching cores open a software queue to each
processing core. To select a processing core, one can utilize multiple
schemes, such as round-robin or load-aware dispatching. The
choice of processing core is stored in a flow table, thus subsequent
packets of the flow are sent to the same core; however, building &
maintaining this table has a huge performance cost. We refer to this
technique as stateful queuing in Table 1 and Figure 4b. Affinity-
Accept [6] modifies the Linux kernel to keep a per-core flow table
and tries to use the same core for dispatching and processing. This
improves performance, but load-balancing only occurs upon the
arrival of new connections.

RSS is implemented by most recent high-speed NICs. Upon
reception, a set of fields† defined per-protocol of every packet is
hashed by the NIC. This hash is used to select a hardware queue.
Each core opens one hardware queue to receive packets from the
NIC. Directly using a modulo of the number of queues on the
hash to select the queue would require that most of the flows be
redirected to a new queue when the number of queues changes.
This is unstable. Instead, RSS uses an indirection table (see Figure
2) to achieve a scheme similar to consistent hashing[23]. The hash
selects an entry in the indirection table and this entry contains a
queue index. As shown by [55], RSS may hash too many elephant
flows to the same cores, while other cores are starved of work.

Sprayer [55] abuses the RSS functionality by computing the hash
on packets’ checksum instead of the 5-tuple. This allows it to mimic
the round-robin software queuing method, but with the dispatching
done entirely in hardware. Sprayer achieves good load-balancing,

†Typically, source/destination IP address and source/destination ports for TCP
and User Datagram Protocol (UDP).

but breaks flow to core affinity; therefore, it is unsuitable for stream
processing functions as will be shown in §5.5.

Metron [25] translates service chains’ traffic classes (synthesized
by SNF [26]) to NIC or OpenFlow classification rules (see Figure 4c).
We refer to this method as traffic-class based in Table 1 and
Figure 4b. Because packets can be dispatched directly to the queue
of the core that will process them, inter-core transfers are avoided.
In Metron, when a core is overloaded, half of the traffic classes
currently sending packets to the queue assigned to the overloaded
core are updated to dispatch packets to a new queue, and thus
a new core. This scheme is stable; however, Metron cannot load-
balance traffic classes which cannot be split. e.g., if one runs only an
HTTP server listening for TCP packets on port 80, the only traffic
class will be "TCP dst port 80"; therefore, Metron can only use one
core. Metron offloads some network functions and handles multiple
servers using a centralized controller, but these features are outside
the scope of this paper.

Table 1 summarizes the observations of existing load-balancing
techniques and our technique (described in § 3). Stability is
evaluated as Pmiss , the probability for a core to receive a packet
of a flow that was previously received by another core (excluding
flows intentionally scheduled for migration). C is the number of
cores.

Table 1: Overview of packet dispatching and load-balancing
methods. RSS++ is the only method that meets both
performance and load-balancing criteria.

Method Performance Pmiss Work division
Software queueing ∼ ✗ 1 − 1

C ✓
Stateful queueing ✗ ✓ 0 ✓
RSS ✓ ✓ 0 ∼
Sprayer ✓ ✗ 1 − 1

C ✓
Traffic-class based ∼ ✓ 0 ∼
RSS++ ✓ ✓ 0 ✓

3 RSS++ DESIGN
The goal of RSS++ is to maximize flow affinity and fairness by
moving some flows between cores, as described in § 3.1. In contrast,
using more or fewer cores to spread or concentrate the load will be
called CPU scaling (see § 3.2).
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Figure 5: RSS++ overview.

3.1 Load-balancing among active cores
Figure 5 shows the overview of RSS++. RSS++ does not require
any modifications at the NIC; instead, it leverages the fact that the
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RSS hash, that gets computed by commodity NICs, is stored in the
packets’ metadata. Each core tracks the number of packets received
by each bucket. To do so, each core maintains a table of the same
size as the number of RSS buckets and uses the low order bits of
the hash as an index into the table and increments a simple counter.
At a variable frequency, ranging from 1-10Hz, RSS++ gathers the
bucket counters and re-assigns some RSS buckets to cores that are
not close to the average load. This is done by re-programming the
RSS indirection table using the standard API provided by the NIC.

Figure 6 visualizes the RSS++ algorithm for stateful hardware-
driven load-balancing. RSS++ gathers the cores’ load, computes
the average load, and builds two sets: overloaded (i.e., with above
average load) and underloaded (i.e., with below average load) cores.
The core load is a number ranging from 0% when the core is idle,
to 100% when the core is completely busy. The exact metric behind
the core load is explained in § 4. RSS++ assumes each bucket is
responsible for a certain fraction of the load of the core serving the
bucket, i.e., the fraction is the number of packets received by the
bucket divided by the total number of packets received by that core.
In the following, the bucket’s fractional load refers to its fraction of
the core’s load, rather than the number of packets. We then solve
an optimization problem which assigns buckets of all overloaded
cores to either stay in place or to migrate to an underloaded core,
according to their fractional load.

90%
Processing core 2

                        Processing core 1

                         Processing core 2

Fractional load

Average load 
65%

Imbalance

-25%

25%

Bucket
Reassignment

Problem Solver
Minimize imbalance

40% Load

90% Load

Figure 6: RSS++ algorithm to reassign load between cores.

Problem dimension: It is worth noting the dimension of the
problem. Intel 82599 10GbE NICs have a 128 bucket indirection
table, while XL710 40GbE NICs have a 512 bucket indirection table.
Mellanox ConnectX-4 and ConnectX-5 100GbE NICs can use more
than 512 buckets, but system’s limitations restrict the table to 512
buckets in DPDK and 128 buckets in the Linux kernel driver. The
number of overloaded and underloaded cores is system dependent,
but the algorithm should perform well, even for a hundred cores.
Techniques for solving multi-way number partitioning, a similar
optimization problem (without the transfer constraint and without
considering the existing load of underloaded cores), would take
tens of seconds[56]. However, an optimal solution is unnecessary.

Instead, a quick sub-optimal solution is sufficient as a new re-
assignment will be done soon. Moreover, the input of the problem
is imprecise, as the load of RSS buckets varies over time - as does
the amount of work per core; hence, even an optimal solution may
not lead to an assignment that is optimal during the next interval.

Therefore, we adopt an iterative algorithm that stops as soon as
(i) we find a solution leading to an 1% or less overall squared load
imbalance or (ii) after 10 iterations while minimizing the number
of re-assignments.
Formal optimization problem: We formalize the problem of
balancing the load among a server’s CPU cores as follows: C is
the set of all cores and B is the set of buckets. Mi is the current
load of underloaded cores and zero for overloaded cores. Li is the
fractional load of each bucket Bi and M is the average load that
each core should reach. Ti, j is the assignment matrix of core i to
bucket j andT oldi, j a copy of the current assignment matrix, thus one
can formulate an optimization problem that migrates the imbalance
to achieve the best spreading of the load as follows:

min
T

∑
i ∈C

((T ∗ L⊺)i −Mi )2+

α ∗
∑
i ∈C, j ∈B Ti, j , T

old
i, j

2
s.t.

∑
j ∈B

Ti, j = 1 ∀i ∈ C, (1)

Ti, j ∈ {0, 1} ∀i ∈ C, j ∈ B (2)

The first constraint ensures that a bucket is assigned to one
and only one core, while the second makes the problem binary,
as we cannot migrate parts of a bucket to different cores. The
minimization is done using a multi-objective function.

The first term of the objective function minimizes the resulting
squared load imbalance by applying the assignment described byT .
Without the second term of the objective function, the problem is
similar to multi-way number partitioning[30]. Multi-way number
partitioning finds the best way to split a set of numbers (such as
the load of buckets) into subsets, such that all subsets exhibit the
same sum of elements. In our case, the subsets represent cores.
The difference from the classical problem is that some subsets
are assigned to underloaded cores that already have some load.
The second term minimizes the number of bucket transfers. Each
migration has a cost, that should be reduced as much as possible
(see § 5.6). The scalarization of the two objectives is done with the
α factor.
Heuristic algorithm description: We start from the current
assignment and move the heaviest buckets first. In the first iteration,
we run a greedy algorithm that tries to solve a variant of the
standard multi-way partitioning. We sort the overloaded cores (i.e.,
those with above average load) in descending amount of load and
then for each core we sort its buckets in descending amount of
fractional load. Then, we sort the underloaded cores by ascending
amount of load, i.e., the most underloaded core first. We repeatedly
select the most overloaded bucket of the most overloaded core and
try to fit it in the most underloaded core (unless the underloaded
core becomes overloaded). After an assignment, we change the
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load of the overloaded and underloaded cores to account for this
transfer. We stop taking buckets from overloaded cores when their
load is within 1% above the average. The classical multi-way number
partitioning algorithm considers all buckets of overloaded cores
at once, while we keep buckets to move assigned as children of
their current cores to balance the overloaded cores at the same
time we solve the balance of the underloaded cores. Indeed, blindly
taking buckets from the overloaded set could lead to emptying an
overloaded CPU.

The first iteration leads to a situation where insufficient load
is moved from the overloaded cores (as the desired balance is the
average of all cores’ load); therefore, the underloaded cores do not
receive enough load. This is used as a lower bound. In the second
iteration RSS++ tries to find an upper bound, by moving more than
enough buckets, hence the overloaded cores become underloaded,
while the underloaded cores become overloaded. This is done
by allowing transfer of more buckets, by as much of a bucket’s
fractional load as the imbalance resulting from the first iteration.
The goal of all subsequent iterations is to find the inflection point as
shown in Figure 7, thus avoid moving too few or too many buckets.
While there is no guarantee that this is the optimal solution of the
formal problem, intuitively moving a few additional less-loaded
buckets may lead to a better solution.
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Figure 7: Three iterations of the RSS++ heuristic algorithm
to solve the bucket assignment problem.

Evidence about the convergence of the RSS++ algorithm:
During the experiment described in § 5 using 16 cores to process
packets of a ∼15Gbps network trace, in ∼85% of cases the algorithm
stops at the first run, with an average completion time of ∼25 µs
and a total squared load imbalance of less than 0.5%. Including the
query of CPU loads and preparation of the input to the algorithm,
solving rarely takes more than 500 µs.

3.2 CPU scaling
When a core is overloaded and the average load is higher than
a target load (currently, a default of 80% based upon the 95th
percentile tail latency - see § 5.2), re-balancing among active cores
as described in § 3.1 may be insufficient. When a new core is
allocated to the application, this new core has no load and no
assigned buckets, but the average load is lowered. Most cores will
now exhibit an overload imbalance, hence the balancing algorithm
migrates just enough load to the new core to re-balance the load.

In contrast, removing a core is a little trickier. This is because
the balancing algorithm described in § 3.1 cannot ensure that a core

would be emptied of its buckets. To decide when a core should be
removed, we sum the difference between the target load and each
core’s current load. We remove one core if the sum is bigger than
1 + α ∗ N and N > 2, where N is the current number of cores and
α a factor to prevent aggressive scaling decisions due to variance
in the load of a core (by default, 5%). To remove a core, we solve
the traditional multi-way number partitioning problem to assign
all buckets of this core to existing cores in such a way that the load
will be even. We sort the deactivated cores’ buckets and migrate
the most loaded buckets first, while maintaining a priority queue of
the active processing cores, with the least loaded core first. As the
smallest buckets are left to last, the imbalance is likely to be small.
If not, the load-balancing algorithm will soon run and re-balance
the remaining errors in initial re-assignments.

Most virtualization technologies, such as KVM [31], allow
dynamic reduction/increase in the number of virtual CPUs (vCPUs).
Given that cloud operators bill per-vCPU, scaling applications at
a fine granularity of time reduces costs or at least allows better
collocation. For instance, performing balancing at high speed allows
Software Defined "Hardware" Infrastructure (SDHI) [53] to quickly
free available cores. Once the utilization of a set of machines has
decreased beyond a certain point, one may even begin deactivating
some of these machines.

3.3 State migration
When a core is added to the set of processing cores, some packets
will start to be received by the new core. Similarly, when a
core is deactivated its packets will be sent to other active cores.
Furthermore, when the load-balancing is unstable, some flows will
be migrated from active cores to other active cores. RSS++ is stable
as it relies on RSS’s hashing, however RSS++ willingly migrates
some flows to re-balance the load. In all cases, the flow’s existing
state will need to be accessed.

The easiest way to avoid migration is to have shared state
management. E.g., in the Linux kernel, a unique hash-table is used
by all cores to access the common state of all flows. As the number
of flows increases, so does the amount of contention to access this
common state (see § 5.5).

Moreover, re-assigning RSS buckets can cause packet reordering,
much as in FlowDirector [17] (a system to direct flows to NIC
queues). This behavior is confirmed by Wu et al. [59]. For example,
if packets of flow F are sitting in a queue, when F is redirected
to a different queue that is less filled, the new packets of F could
be handled before the enqueued packets are handled, leading to
reordering. Therefore, we propose a new state management data
structure that takes advantage of the fact that packets come with
a parent group that is the source of balancing among cores. For
RSS++, the grouping is the RSS buckets, but this technique is also
usable for FlowDirector or traffic-class based migration [25].

The key idea is to keep one flow table per RSS bucket (hereafter
referred to as a per-bucket table) as shown in Figure 8. When an
RSS bucket is marked for migration, e.g., when moving a bucket
from core A to core B, the table is released only when A is sure
to have handled all packets of the RSS bucket. Core B then takes
control of the table. If packets are received by core B, while core
A still holds the table, those packets are enqueued in a per-bucket
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queue to resume their processing later. Since only core B will
handle this queue, no lock is necessary. As the per-bucket table
is released only when all packets of this RSS bucket have been
handled, no re-ordering can occur. To detect when core A has
processed all previously enqueued packets, we query the number
of packets in the queue when the RSS table is rewritten. After A
has processed that many packets, we know the new table has been
applied. Alternatively, when core A receives packets from a bucket
just assigned to A, it knows it is starting to receive packets of the
new table and therefore can release its own tables to be migrated
right away. At normal load levels, the number of packets sitting
in a queue is low - as cores have enough cycles to process their
incoming packets. Similarly, as RSS++ seeks to ensure an even
balance between cores, B should have as much work in its queue
as A, hence it will start processing new packets at the same time A
releases those packet’s flow table. Therefore, rarely will packets sit
in the per-bucket queue, and if any do, the extra latency is expected
to be very low.

Indirection table
1 7
2
5
7
6
...

Flow tables

...

     Owner CPU: Core 1
  Current Count: 56711
  Migration Plan:
  -            At pkt: 56719
  -         To CPU: Core 7
  - Pending pkts:

...

Figure 8: Non-reordering, non-blocking RSS++ migration
scheme.

4 IMPLEMENTATION
To achieve interoperability with optimized and legacy network
drivers, we implemented RSS++ both on top of DPDK[34] and
directly in the Linux kernel.

For the DPDK prototype, we used FastClick[4] an enhanced
version of the Click Modular Router[29]. The per-bucket packet
counting is done directly as a function call, accessing the packet’s
metadata (rte_mbuf in DPDK) to read RSS’s hash and incrementing
the relevant entry in a counting table that keeps track of the number
of packets per bucket for each core. To avoid synchronization
problems, the counters are reset by using an epoch counter. After
reading the counting tables, RSS++ increments the epoch. When
updating the counting table, each core first verifies a local copy of
the epoch number, and then resets the counter if it differs. Therefore,
both implementations incur a slight memory overhead equal to the
size of the indirection table times 8 bytes‡ for the counter values
and the epoch. For a 512 bucket indirection table, this is 2KB per
core. As only 1/N (where N is the number of cores) of that table will
be allocated to one given core, not all of that memory will need to
reside in cache. If memory is an issue, a single table may be used for
all cores, at the price of false sharing, or more fragmentation. The
balancing timer runs as part of the user-level application, therefore
it can directly access the counting tables and use DPDK’s function to
update the RSS indirection table. A frequency of 10Hzwas sufficient

‡At 100Gbps, the worst case would be 150M packets per seconds, therefore a
32 bit counter is sufficient. One bit would be sufficient for the epoch, but padding leads
to 8 bytes per bucket.

in our experiments. However, when the load is low, it is unnecessary
to run the algorithm this often; therefore we use an exponential
backoff to lower the frequency when the average load and the
imbalance are lower than a threshold. As DPDK relies on polling,
the traditional CPU load metric given by the Operating System
(OS) is always 100%; therefore, we compute each core’s load as the
number of CPU cycles spent to process packets over the cycles
spent to poll for packets with or without success.

Before applying the result of the optimization, the balancing
timer propagates a message to the flow classification manager of
the application to say "bucket X, Y and Z will move from core A to
core B". The application may or may not register a function callback,
though, in our implementation the message is used to implement
the state migration scheme explained in § 3.3 and mark some of
the per-bucket flow tables for migration.

Intel 82599 10GbE and XL710 40GbE NICs take roughly 20 µs
to update the RSS table. However, the Mellanox ConnectX-4 and
ConnectX-5 NICs have to restart the device to reprogram the global
RSS table, which leads to loss of hundreds of thousands of packets at
a 100Gbps rate. Fortunately, we can install a flow rule that matches
all IP traffic and add RSS as an action of that rule. As these NICs
do not support updating actions, at the next even tick we install
two rules that match a subclass of the first one (e.g., by matching
the last bit of the destination IP address) both with the new RSS
action and remove the old one. At odd ticks we install a single rule
and remove the two old rules. This process takes around 20ms.
Mellanox is working to decrease the flow installation time by a
factor of a thousand[36].

In the Linux implementation, we insert a BPF program to count
the number of packets per-bucket into the recently introduced
Linux eXpress DataPath (XDP)[16]. BPF programs are verified and
then compiled as native code by the kernel; therefore, they are
very efficient. While BPF supports multiple data structures that
can be used to share data with user-level programs, we opted for a
per-CPU array map. The user-level daemon’s balancing timer reads
and resets the counter map. Re-programming the table is done
through the ethtool API (known for the user-level client of the
same name). The Mellanox ConnectX-4/5 driver does not exhibit
the same problem as its DPDK counterpart, thus the table can be
rewritten seamlessly.

As a first step towards sharding, Linux introduced the
SO_REUSEPORT option to allow multiple sockets to listen to the
same port. When a connection establishment packet is received,
one of the sockets is selected, by default using hashing. This allows
an application to receive packets using multiple receive queues,
and therefore multiple threads§. One can select a per-core socket
with a two instruction BPF program (shown in Figure 9). In Linux,
when a packet is received for an established connection, the packet
is put in a reception queue, then threads sleeping on the associated
descriptors are awakened.

When RSS++ is re-balancing a bucket, the associated thread
needs to be migrated to its new core. Therefore, we added a new
socket option SO_AUTOMIGRATE that migrates the process to the
last core that received a packet for its pending sockets beforewaking

§In the DPDK implementation, the same process and the same thread receives
packets and processes them to completion.
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it up. To do so, when a packet is received, the reception core index
is kept in the socket metadata. When a thread does an operation
such as reading, we verify the current core index matches the
index in the metadata. Otherwise, the current thread is rescheduled
on the correct core. Figure 9 summarizes the most important
changes made to iPerf2 to enable sharding. SO_AUTOMIGRATE is
complementary to SO_REUSEPORT, as the latter allows opening
one listening socket per core and spawning a newly established
socket upon connection, while the former allows migration of
established sockets between the cores as flows are load-balanced.

1 i n t boo lean = 1 ;
2 s e t s o c k o p t ( sock , SOL_SOCKET , SO_REUSEPORT , ( char ∗ ) &

boolean , s i z e o f ( boo lean ) ) ;
3 s e t s o c k o p t ( sock , SOL_SOCKET , SO_AUTOMIGRATE , ( char ∗ ) &

boolean , s i z e o f ( boo lean ) ) ;
4 s t r u c t s o c k _ f i l t e r code [ ] = {
5 { BPF_LD | BPF_W | BPF_ABS , 0 , 0 , ( uns igned ) (

SKF_AD_OFF + SKF_AD_CPU ) } ,
6 { BPF_RET | BPF_A , 0 , 0 , 0 } ,
7 } ;
8 s t r u c t s o ck_ fp rog p = {
9 . l e n = 2 ,
10 . f i l t e r = code ,
11 } ;
12 s e t s o c k o p t ( sock , SOL_SOCKET , SO_ATTACH_REUSEPORT_CBPF , &p

, s i z e o f ( p ) ) )

Figure 9: C code to use SO_REUSEPORT, our new option
SO_AUTOMIGRATE, and a BPF program to select the socket
index equal to the current CPU.

To reduce the number of context switches, recent software
does not use one thread per socket, but uses poll, epoll, or similar
functions to listen to events from multiple sockets using a single
system call. If more than one of those sockets are from different
RSS buckets, RSS++ would migrate the listening task back and
forth, which would be very inefficient. Therefore, we propose a
second socket option, SO_SCHEDGROUPID, to get the "hardware
scheduling ID" (i.e., the RSS bucket index) of a given socket. Thus
one can listen for all file descriptors of the same RSS bucket at
once by grouping file-descriptors per RSS buckets and use one
thread listening for events per group. As future work, we propose
that the kernel manages and migrates file descriptors that have
SO_AUTOMIGRATE enabled between epoll queues; therefore, a
single thread or process per core can listen for all its assigned
sockets.

The Linux TCP stack uses a single hash-table of listening sockets
and a single hash-table of established sockets, hence these are
potential sources of contention. We shard these hash-tables into
per-core tables. Unfortunately, performance did not improve, thus
more work is needed to remove the locks at numerous places in
the Linux Kernel code to fully enable sharding. This is why we did
not implement per-bucket flow tables in the kernel.

5 EVALUATION
In this section we evaluate performance, scalability, and quality
aspects of intra-server load-balancing, comparing RSS++ with state
of the art solutions using the DPDK implementation. § 5.1 discusses

data used to evaluate our ideas. Using this data we answer the
following questions: How well does RSS++ improve RSS? (§ 5.2)
How quickly does RSS++ scale in response to input changes? (§ 5.3)
How fair is RSS++? (§ 5.4) How important is flow-awareness? (§ 5.5)
Can the state migration algorithm handle RSS++’s migrations?
(§ 5.6) Can RSS++ handle realistic use cases? (§5.7)

5.1 Traces
Unfortunately, no datacenter traces that contain a realistic
distribution of flows and enough packets to showcase load-
balancing at high speed for several seconds are available. Traces
from Facebook [54] or Azure [7] expose only aggregate flow
statistics (e.g., number of packets), while network headers are
omitted; unfortunately, these headers are an essential input for
load-balancing.

Therefore, we collected a campus trace called Campus with more
than 20K users. Additionally, to showcase higher throughput than
the ∼4Gbps of the Campus trace, we forged a novel trace (called
Campus #4) by combining 4 windows of 90 seconds of Campus
in parallel. The flows were rewritten to ensure no collisions. The
result is a ∼15Gbps trace with four times more users.

The first trace has around 20K active flows every second (flows
that received at least one packet in a one second window). The
Campus #4 trace has around 80K active flows every second, among
which half are flows seen for the first time. These traces have a total
of 661K and 2.7M flows respectively. 50% of the flows consist of a
single packet, 80% of the flows are comprised of less than 10 packets,
and the 95th percentile flow size is 30 packets; the mean flow size is
around 5900 packets for both traces. Roughly 20% of the packets are
smaller than 74 bytes and 50% are MTU-sized. Appendix A gives
further details of these traces.

To evaluate the performance of the load-balancing according
to various metrics for each technique presented in § 2, we replay
traces to a Device Under Test (DUT), that will do some processing
on each packet. The DUT has an 18-cores Intel® Xeon® Gold 6140
CPU@ 2.3GHz with Hyper-Threading disabled and 256GB of RAM.
All machines use the Ubuntu 18.04 LTS OS with DPDK 19.02. To
measure the latency, the generator rewrites part of the payload to
include a unique packet number and keeps track of this number
to timestamp when the packet is actually sent. After processing
the DUT bounces packets back to the generator, so the latter can
compute the overall round-trip time.

5.2 How well does RSS++ improve RSS?
We conducted a comparative performance study to showwhy RSS++
should be preferred over standard RSS-based systems.

Figure 10a shows the performance of RSS++ versus RSS using
the platform described in § 4. Each core is serving one queue
of the NIC configured with 4096 buffers. As experiments are
conducted using DPDK, there are no interrupts from the NIC. In
the sharding context, processing is run-to-completion in a one-
queue-for-one-core mapping. Both systems are tested with the
same increasing offered load (by replaying the Campus #4 trace
at different proportions of its original capture timing, while using
a fixed per-packet workload). We use 4 cores as this leads to an
average ∼ 80% CPU load with the original trace speed, a value
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Figure 10: Efficiency of RSS++ compared to RSS. RSS++
absorbs ∼10% more load, while dropping orders of
magnitude fewer packets and achieving lower latency.

sufficient to observe the increased latency, while limiting over-
provisioning. As the offered load increases, the queues start to grow.
The greater the imbalance, the more congested some queues will
be, thus the respective packets will experience increased latency.
Figure 10b shows the number of packets dropped over time. When
the offered load is high, RSS++ drops fewer packets. Figure 10c
shows the distribution of packet latency at offered loads leading to
an average 81%, 90%, and 94% CPU load, corresponding to offered
loads of 16.13Gbps, 19.23Gbps, and 20.61Gbps. As the average
CPU load increases, RSS starts to enqueue more packets in some
queues - increasing tail latency. Figure 10c shows the tail latency
ratio at one percentile for each CPU load. RSS++ exhibits up to an
order of magnitude lower tail latency than RSS, allowing a higher
average CPU load, while offering a comparable latency to users.

5.3 How quickly does RSS++ scale in response
to input changes?

We inject the Campus #4 trace at a controlled proportion of its
original capture timing to stress the resource allocation schemes of
RSS, RSS++, and Metron.

As shown in Figure 11, all of the systems absorb the offered
load, despite its variation; however, there is a key difference: RSS
uses a constant number (i.e., 15) of processing cores, while Metron
and RSS++ dynamically adjust the amount of processing power
according to the offered load. Changing the number of cores used
by RSS in a sharding context would break connections as it relies on
hashing, forcing the operator to over-provision. By comparing the
purple dashed lines and green dotted lines we observe that RSS++
allocates 50% fewer cores on average compared to Metron’s state
of the art resource allocation scheme.

When a core is overloaded, Metron splits its traffic classes into
two parts, independently of their load - which is "too harsh". More-
over, Metron can only merge/split pairs of underloaded/overloaded
cores, while RSS++’s fast re-balancing scheme takes all overloaded
and underloaded cores into account at once.

Unlike traffic-class based dispatching (e.g., Metron), RSS++ does
not require NICs with flow classification capabilities, instead it uses
RSS’s indirection table to re-balance some part of the load on the
fly. RSS has been available for many years, while flow classification
capabilities are often limited. E.g., Intel 82599 NICs are limited to 8K
flows with a single shared mask preventing any realistic traffic-class
programming.
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Figure 11: RSS, RSS++, andMetron under dynamic workload.
RSS++ achieves the same throughput as Metron, with 2x
fewer cores on average. Between 0-15 seconds the input
trace (Campus #4) is replayed with an increasing replay
rate, while a decreasing replay rate is applied between 31-60
seconds.

J. T. Araújo, et al. [1] suggest their services can receive hundreds
of times their usual load due to traffic surges because of e.g.,
Flashcrowds and DDoS attacks; therefore, it is necessary to
quickly accommodate surges in load. Figure 11 shows RSS++ could
implement NFV applications to drop malicious traffic that can
quickly scale to absorb surges in load.

5.4 How fair is RSS++?
This section focuses on load-balancing performance in terms of
fairness. A method that distributes an almost equal number of
packets to all cores will be considered fair, while one that distributes
many more packets to one or more cores will be considered skewed.
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To evaluate fairness without (yet) considering flow affinity, the DUT
generatesW pseudo-random numbers for each packet received. We
measuredW = 1 to take around 8 CPU cycles. As there is no state,
this test case allows us to use various load-balancing methods to
dispatch packets to the DUT’s processing cores.

Figure 12a shows the proportion of packets received by the most
loaded core relative to the least loaded core, when using 8 processing
cores for each technique presented in § 2. To keep the average
core’s CPU load around 50%, we setW = 150. The fairest load-
balancing scheme is software round-robin. Sprayer is very close as it
achieves nearly the same balancing as round robin, but in hardware.
The flow-aware load-balancing methods generally perform worse
than Sprayer or software round-robin. Stateful flow-aware load-
balancing does not really improve performance, as balancing new
flows according to the current load is insufficient to achieve a good
balance. Note that all software-based methods need a dedicated
core to do the load-balancing. Figure 12b shows the same test for a
varying number of processing cores using the Campus #4 trace and
whenW is proportional to the number of cores. Single-queue work
stealing (“SW Shared Queue” in Figure 12) exhibits a high imbalance
when the number of cores increases as nothing guarantees ordering
between cores trying to get packets from the queue.

Unfairness itself is not a problem. However, a consequence
of unfair load-balancing is that some core(s) will receive more
packets than others and as the aggregate rate increases these
packets will queue up, increasing latency and in the worst case
lead to packets being dropped. Figure 13 shows the 95th percentile
tail latency (the latency of the 5% longest RTTs) for the same
test with 8 processing cores, under increasing offered load. While
hardware-based methods meet the fairness trend, software-based
methods take a performance hit due to inter-core communication
and internal queuing.

Figure 14 compares the techniques’ throughput with the same
per-packet workload. This test is similar to Figure 12 but the CPU’s
clock frequency was reduced to 1GHz to evaluate the impact of
usingmore cores without unrealistically increasing the replay speed.
Sprayer and RSS++ need at least 5 cores to handle the offered load,
while RSS needed 8 cores. Due to the unfairness of RSS, some cores
retain almost all their previous amount of work, while new cores
may receive little traffic. In addition to requiring a dedicated core
for dispatching, software-based dispatching does not scale as well
as hardware-based methods. Due to cache invalidations across
the CPU interconnect when exchanging buffers and inter-core
buffer recycling [10], the non-sharded methods exhibit decreasing
performance when more than 8-10 cores are used.

5.5 How important is flow-awareness?
While Sprayer seems to be suitable for spreading the work (as
it nearly randomly dispatches packets to cores based upon their
checksum), one must evaluate the impact of distributing packets to
cores in a flow aware fashion. In Sprayer, only connection initiation
packets have an assigned core and they are redirected to the correct
core using software queues. While Sadok et al. argue that few NFV
functions need state, we have a different viewpoint. While the state
of simple functions, such as NAT is limited, many-core solutions
will inevitably lead to cache contention, when all of the cores try to

access the same part of memory to read andwrite state. Additionally,
functions needing to reconstruct the payload and reorder packets,
e.g.,Deep Packet Inspection (DPI), proxy caches, or Transport Layer
Security (TLS) termination proxies need to handle the stream in, at
least, a sequential fashion, and in general in an ordered fashion.

Figure 15 shows the performance of Sprayer (an example of
hardware round-robin dispatching) and RSS methods for 4 test
cases. Figure 15a shows the average number of cycles spent by the
DUT to process a packet for an increasing number of concurrent
UDP flows (each with 1000 UDP packets of 64 bytes). The generator
repeatedly consumes a packet from a randomly chosen flow and
sends it. While this data is synthetic, it allows us to precisely control
the number of concurrent flows. The blue lines markedwith dots are
similar to the test case in § 5.4 generatingW = 100 pseudo-random
numbers per packet using 8 cores. The orange lines marked with
triangles fetches per-flow state in a cuckoo-based [46] hash-table,
using an implementation proposed by DPDK[34]. The green lines
marked with squares do a write for each packet, while the red lines
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packets of themost loaded queue relative to the least loaded
queue) introduced by various load-balancing methods.
RSS++maintains a much better load-balance than any other
flow-aware method.
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Figure 14: Forwarding performance using the Campus #4
trace while executing a fixed artificial per-packet workload.
RSS++ performs similar to Sprayer, maintaining flow
affinity (a 37% reduction in the number of CPU cores
needed), while avoiding dropping packets as compared to
RSS and Traffic-Class methods.

with diamonds do a lock-protected write, ensuring that processing
is sequential. With Sprayer, for a small number of flows, packets
of the same flow are dispatched to multiple cores and processed
concurrently; hence, Sprayer generally performs worse than RSS,
due to spending many more cycles/packet as cores are constantly
invalidating cache lines used by other cores. The sequential write
blocks other cores from doing any processing, while only one core
processes packets of a given flow. As the number of flows increases,
contention diminishes thus Sprayer performs better. With many
flows, our generator sends packets of different flows back-to-back.
In the Internet, packets tend to be forwarded in bursts, leading to
potential state collisions even with a large number of flows.

Figure 15b shows the ratio of packets received out-of-order. To
measure this, we introduce a sequence number inside the UDP

payload. The DUT counts each time a sequence number is lower
than the previously received one for each flow; hence, the DUTmust
read and write the sequence number per-flow. Therefore the out-
of-order statistic is only computed for the write and sequential
write test cases. As reordering does not depend on the DUT’s
processing, the two actions not shown in Figure 15b should follow
the same trend. In the case of NFV, running such a system would
be extremely selfish - as with 4 flows, reordering is ∼30%; hence
any stream processing, on the same machine or downstream of
a DUT implementing a network function, would have to reorder
nearly a third of all packets. Besides forcing clients and servers
downstream to buffer packets in order to reorder them, reordering
breaks Large Receive Offload (LRO) and Generic Receive Offload
(GRO) (i.e., hardware and software techniques to coalesce packets of
a flow into a single large buffer); these could reduce the per-packet
overhead of CPU processing time in TCP stacks by up to a 55%[38].
While flow unaware dispatching achieves fair load-balancing, it is
inapplicable to most networking applications.
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Figure 15: Impact of flow unaware load-spreading with an
increasing number of UDP flows of 1000 packets when
doing: (i) no per-flow action, (ii) reading a 4-byte per-flow
space, (iii) writing to it, or (iv) writing, while holding a lock
to force sequential action. Concurrently processing packets
can double the CPU usage, but highly increases reordering.

5.6 Can the state migration algorithm handle
RSS++’s migrations?

A purely sharded approach segregates flow state per-core, allowing
efficient access. This section shows that the per-bucket data
structure proposed in § 3.3 allows fast state access after a migration,
to underline the importance of avoiding a shared flow table.

Figure 16 shows the throughput and average latency of the DUT
forwarding 1024 concurrent flows of 1500-bytes UDP packets with
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W = 100, potentially achieving 100Gbps. We add a flow entry
either using the cuckoo hash-table or the presented per-bucket
technique. Every 2 seconds, the RSS indirection table is rewritten
to use one more cores using consistent hashing (and not RSS++).
Due to CPU contention, using more cores with the shared table
does not lead to as much improvement as when using per-bucket
tables. While 7 cores are sufficient to handle the load with per-
bucket tables, adding more cores with the shared table approach
does not increase the throughput up to the 100Gbps line-rate of
the NIC. Moreover, adding cores with a shared table increases the
average latency, while the per-core latency decreases by an order
of magnitude (see the orange lines in Figure 16). In contrast to
using a shared table, the amount of reordering when using the
per-bucket table is 4x lower and L2 cache misses are 2x lower.
This shows that the proposed migration technique is suitable for
high-frequency core scaling, which requires efficient compaction
of multiple applications with variable offered loads.

0

2000

4000

6000

8000

10000

La
te

nc
y 

(µ
s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Latency
Shared

Per-bucket

0 5 10 15 20 25 30 35
Time (s)

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

Throughput
Shared
Per-bucket

Figure 16: Performance comparison of per-bucket tables
versus a single shared table, when adding an additional core
every 2 seconds by reassigning theRSS indirection table. The
per-bucket table is 20% more efficient than the shared table
and enables seamless scaling, proving to be fit-for-purpose
to back up RSS++’s migrations.

5.7 Can RSS++ handle realistic use cases?
To demonstrate that RSS++ can handle realistic use cases we execute
three test cases with network functions running on 1 to 16 cores: (i)
a firewall (labeled “FW”) with 36K rules built from the traffic classes
observed in the trace; (ii) chained with a NAT taken from [3], and
(iii) a DPI using Hyperscan[58]; a pattern matcher that works in
streaming mode, allowing per-stream state, while updating the state
as packets go through. To reach higher speed, we preload the first
200M packets of the Campus #4 trace in memory and replay it in a
loop at the NIC’s 100Gbps maximum line-rate.

Figure 17 visualizes the performance of RSS, Sprayer, and RSS++
when running the three service chains described above. As Sprayer
dispatches packets of the same flow to multiple cores, each core
accesses multiple paths of the firewall’s classification tree. For this
reason Sprayer exhibits 15% more cache misses than RSS++. RSS
can achieve a steady throughput (almost) at 100Gbps, but with 4
additional cores than RSS++ (i.e., 12 versus 8).

As a NAT requires flow-based processing, Sprayer suffers from
contention among the cores as mentioned in §5.5. Specifically, the
throughput of Sprayer caps below 60Gbps, as shown by the pink
triangles and the pink dashed lines in Figure 17. When realizing

the FW+NAT service chain, RSS cannot achieve line-rate even with
15 cores (while 10 are enough with RSS++) because RSS leaves
some cores overloaded, dropping packets that could be processed
by some other less-busy cores. In contrast, RSS++ demonstrates a
linear increase in throughput with an increasing number of cores
until the line-rate limit (see the purple diamonds with the purple
dashed lines in Figure 17).

Finally, the dotted lines in Figure 17 depict the performance of the
three systems when realizing the FW+NAT+DPI service chain. As
also noted in the FW+NAT case, Sprayer’s per-packet dispatching
incurs excessive performance overhead due to locking, which
prevents Sprayer from achieving more than 57Gbps. RSS++ and
RSS achieve a comparable linear throughput increase per additional
core up to a maximum of 70Gbps and 63Gbps respectively.
Key outcome: RSS++ can realize stateful service chains (i.e.,
FW+NAT) at line-rate 100Gbps, while demonstrating up to 10%
and 40% higher throughput than RSS and Sprayer respectively.
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Figure 17: RSS++ better exploits the available cores, while it
is the only solution (among the systems being tested) able
to achieve line-rate 100Gbps throughput for the stateful
FW+NAT service chain.

6 RELATEDWORK
Here, we discuss related efforts beyond the work mentioned inline
throughout this paper.
6.1 Intra-server load-balancing
Shenango [45] uses a dedicated core to dispatch traffic to a set of
cores per application. As described in § 5, this solution imposes
an excessive performance cost compared to directly sending the
packets to the correct core. Moreover, Shenango does not re-balance
load between cores, but rather uses the RSS hash to dispatch packets
to the processing cores, forcing either increased tail latency or a
lower average CPU utilization. Finally, Shenango does not handle
state migration when re-allocating cores, as it likely relies on a slow
shared flow table per application.

ZygOS [50] uses an in-kernel software layer atop the network
layer (which relies on RSS) to allow task exchange between cores.
To do so, a single-producer multi-consumer shuffle queue per core
is used to store ready-to-serve connections. Such connections can
be either handled by a local core or stolen by a remote core which, at
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the time, experiences low utilization. Shinjuku [20] uses RSS to split
input load among multiple software-based dispatching cores, which
in turn queue and schedule requests to worker cores. Shinjuku
improves upon ZygOS for heavy-tailed and multi-modal load
distributions, while achieves similar performance with ZygOS and
IX [5] for light-tailed workloads. In contrast to ZygOS and Shinjuku,
RSS++ allows more efficient connection "stealing" between cores
using a hardware-level method (i.e., tweaking the NIC indirection
table) available in commodity NICs. Moreover, RSS++ reduces state
migration overheads by batching migrated connections; such a
feature is neither supported by ZygOS nor Shinjuku.

State migration can be done in advance, when the re-balancing
is decided but before packets are reassigned to new shards.
Split/Merge [51] scales out by selecting a shard to split. This shard is
duplicated with its whole state. Consequently, half of this replicated
state will eventually die off, (i) leading to some temporary memory
overuse, while (ii) causing unnecessary delay to the migration.
Split/Merge employs classification hardware (e.g., an SDN switch)
capable of maintaining per-flow entries to handle scaling. This
needs a tight synchronization between servers and remote entities,
such as an SDN controller.

Affinity-Accept [49] implements a sharded version of the
Linux kernel to load-balance new connections from overloaded
to underloaded cores. Every 100ms a FlowDirector [17] entry is re-
programmed (similar to our use of the RSS table) to migrate a flow
group (i.e., similar to RSS buckets) to direct packets to a core that
handles connections mostly stolen by another core. Unfortunately,
this scheme defeats sharding as it can end up with each flow group
that is handled by a given core containing connections handled by
other cores. This problem may get worse, especially with long-lived
flows that become more common with the web moving towards
HTTP/2. § 5.4 showed that a per-flow, load-aware dispatching
strategy for new connections is insufficient to achieve fairness.
Pesterev et al. propose a more efficient implementation of the same
load-aware strategy. They propose that stealing is done according
to a binary (i.e., busy/non-busy) state rather than the actual load. In
contrast, our scheme quickly computes a near-optimal assignment
directly handled by the NIC. This allows RSS++ to start sharding
at the DMA ring, enabling a run-to-completion approach without
a queue to separate the network stack from the processing path.
Our state migration algorithm involves per-core hash-tables with
established connections and lock-free processing, while Affinity-
Accept uses multiple hash-tables shared between all cores. Unlike
RSS++, the Affinity-Accept source code is not publicly available,
preventing further comparison.

MICA [33] clients statically encode core indices into UDP
datagram headers by "hijacking" the destination port field. Then,
MICA exploits NICs’ perfect match classifiers (e.g., FlowDirector)
to quickly dispatch input requests to the correct shard. This
design choice (i) restricts MICA to stateless UDP-only scenarios,
(ii) hinders dynamic load-balancing due to the fixed data
partitioning among cores, and (iii) complicates real deployments,
e.g., when Network Address and Port Translation (NAPT)
middleboxes are present. RSS++’s flow dispatching mechanism
is also hardware-based, but without the restrictions above.

6.2 NIC-assisted load-balancing
FlexNIC [28] uses software to emulate NICs with enhanced features,
allowing finer programmability for core selection. RPCValet [8]
proposes modifications to networking hardware by creating an API
between the NIC and the system allowing better decision-making
regarding which queues should be selected for each packet. This
could potentially outperform Sprayer [55] (see § 5.5). Instead of
relying on randomness, RPCValet proposes a load-aware queue
selection scheme. As the scope of RPCValet is RPC (i.e., mostly
single-packet requests), they omit mentioning the problem of flow
affinity; hence, we conjecture that either RPCValet’s scheme is flow-
unaware, thus exhibits the same performance problem as Sprayer
for stateful network functions or needs an in-NIC flow table to store
per-flow decisions combined with an eventual migration scheme.

Finally, SmartNICs [40–43, 52] could be used to offload
additional parts of intra-server load-balancing schemes. For
example, Netronome Agilo FX [43] SmartNICs can offload XDP’s
BPF programs; with such a NIC RSS++’s packet counting can be
performed in hardware. In contrast, we show that RSS++ achieves
near-optimal load-balancing and scaling across cores even at
100Gbps links speeds with commodity hardware and with no
additional cost.

6.3 Migration avoidance
RSS++ minimizes the number of flow transfers needed when a load
balancing action is enforced (only a few transfers of per-bucket
tables occur from time to time). Consequently, the performance
impact of RSS++ is just a few L1/L2 cache misses that will occur
at every migration. One can send back packets to the previously
assigned core that still contains their state. This is similar to what
Beamer[44] or Faild[1] do between servers (i.e., "daisy chaining").
However, this would lead to inter-core transfers of packets, leading
to buffering and requiring synchronization mechanisms between
cores. With short flows, it is likely that moving the flow state is
not worth the cache misses. E2 [47] installs rules in switches in
front of a server to redirect existing flows once a load threshold
is reached. Similarly, U-HAUL [35] only migrates elephant flows
betweenNFV data plane instances, avoidingmigration ofmice flows
using preceding Software-Defined Networking (SDN) switches to
remember the mapping of the elephant flows. As future work, we
will attempt to make RSS++ aware of the presence of mice/elephant
flows. However, detecting mice and elephants necessitates keeping
per-flow state, a technique shown to be very expensive (without
specialized hardware) in § 5.4.

7 DISCUSSION AND FUTUREWORK
In this section, we discuss the context, application areas, and
assumptions of this work as well as potentials to extend RSS++
in the near future.

7.1 Workload and processing matters
We target sharded systems with network-oriented workloads,
where a set of cores is dedicated to one application. If background
processing causes a core’s load to increase, RSS++ will migrate
buckets to other cores. RSS++ assumes that migrating packets will
also migrate a proportional amount of load. It is possible that a
core, even with only a single RSS bucket assigned, receives multiple
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elephant flows and exhibits too much load. The more RSS buckets
used, the less likely this situation is to happen. A potential solution
to investigate would be to use NIC flow classification to move
elephant flows out of the overloaded bucket. However, this was
never been needed during the course of our experiments.

For the Linux implementation, we believe that RSS++ is already a
better alternative than the Linux kernel’s IRQ balance for spreading
the network load across multiple cores. IRQ uses core pipelining
to forward packets from a set of reception queues, served by a
set of cores, to a second set of queues, served by another set
of cores, handled by the applications. Pipelining involves inter-
core communication; therefore, it is more expensive than sharding
that runs-to-completion. Some DPDK-based packet processing
frameworks (such as SoftNIC [14], E2 [47], Flurries [61], and
NFP [57]) advocate pipelining for some use-cases. However, as
network interfaces are currently reaching 400Gbps and cores’
operating frequency have peaked, it becomes clear that pipelining
will dedicate multiple cores just for the first part of the pipeline
(i.e., packet reception and, in general, a part of the network stack
processing). In this case, pipelining approaches could also benefit
from RSS++. Specifically, input packets arriving at high speeds can
be load-balanced across the reception cores of the pipeline in a
more effective manner.

7.2 Short, numerous flows
As highlighted in §1, RSS is expected to evenly balance a high
number of short flows among cores (still RSS++ provides support
for scaling under sharding). While this scenario is not often
encountered in the Internet[13, 32], it is typical of key/value store
workloads. MICA[33] proposes tagging packets at the client to
directly send packets towards the correct shard that contains the
value for a given key. However, key popularity will create a high
skew, thus load-imbalance. RSS++ can solve this problem by hashing
on the key. The buckets containing more popular keys will then be
automatically migrated to cores that contain less-popular buckets,
without requiring any client-side support or exposing every single
core to the replication manager. We will further investigate the
usage of RSS++ with key/value stores in future work.

7.3 NUMA and NUCA awareness
As accessing memory from another CPU socket is more costly,
the target assignment algorithm separates cores and buckets per
Non-Uniform Memory Access (NUMA) node. The assignment is
solved independently for each NUMA node, unless there is a large
difference in the average load between the NUMA nodes, in which
case the assignment will be solved on all cores and buckets at
once to re-arrange the balance, allowing inter-NUMA transfers.
Unfortunately, in recent x86 architectures a NIC is attached to a
given socket, hence its traffic will go via this CPU’s interconnect
resulting in decreased performance when using cores in another
NUMA node [24, 27]. Further evaluation of NUMA awareness and
potential solutions, such as multi-socket NICs[37], are left for future
work. RSS++ could also exploit Non-Uniform Cache Access (NUCA)
awareness. Our algorithm could be augmented using the technique
of [11] to re-assign the buckets of each overloaded core, first to
a collocated hardware-thread and then assigned based upon the
transfer times between cores.

7.4 Scaling multiple applications and
virtualization

In the present design, RSS++ scaling is done at the granularity
of a single RSS table. Having multiple applications served by the
same RSS table will lead to context switches and will force all these
applications to scale at the same time, using the same number
of cores. We envision RSS++ with one RSS table per application,
using a minimal number of cores to collocate as many applications
as possible thus eliminate context-switching. This can be done
with existing NICs using Virtual Functions (VFs). VFs are virtual
NICs, exposed by a single physical NIC, supporting various traffic
classification schemes, ranging fromMediumAccess Control (MAC)
address or Virtual Local Area Network (VLAN) ID filtering to multi-
header field flow classification on more evolved NICs. To associate
multiple VFs with multiple virtual machines (thus potentially
multiple applications) Single Root I/O Virtualization (SR-IOV) can
be used. All NICs used for the experiments in this paper offer this
possibility. Specifically, we can use Virtual Machine Device queues
(VMDq) on Intel NICs or the flow classification engine of Mellanox
NICs to perform fast RSS table updates on a per-VF basis. This
way, RSS++ can load-balance each of the VFs independently, thus
support multiple applications (virtualized or not) with minimal
network setup modifications.

7.5 Outgoing connections
In this paper, we focused on evaluating server andNFV scenarios. To
initiate new connections in a sharding context, one needs to ensure
returning packets will correctly find their state. One can hash in
software the 4-tuple of a new connection as RSS and mTCP[19]
would do to find the future RSS bucket of a connection, and then
add the entry in the correct flow table. As future work, we will
evaluate this technique for client scenarios.

8 CONCLUSION
This paper bridges the gap between inter-server load-balancing and
the fact that today’s servers are not single entities but rather many-
core machines that must locally balance requests across cores.

RSS++ combines NIC-based scheduling with sharding to remove
the need for traditional scheduling; therefore, avoiding context
switching and costly cache misses. The DPDK version of RSS++
achieves (i) 14x lower 95th percentile tail latency and (ii) orders
of magnitude fewer packet drops compared to RSS under high
CPU utilization. The Linux kernel implementation of RSS++ load-
balances input flows at the rate of 100Gbps across the correct
number of cores, while bounding tail latency and transferring a
minimal amount of state.

All software and automated scripts to reproduce the experiments
shown in this paper are available at [2].
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A TRACES
Table A-1 shows a summary of the characteristics of the first 90
seconds of each trace described in § 5.1, while Figure A-1 visualizes
key statistics of these traces.

Table A-1: Characteristics of the traces.

Campus Campus #4 unit
Total # of flows 808 3283 KFlows
Avg. active/new flows 18.1 / 8.7 71.3 / 34.9 KFlows/s
Avg. # of pkts/flow 4434 4423 pkts/flow
Bandwidth 4.1 15.1 Gbps
Avg. packet size 1011 1002 Bytes
Total data size 28.7 104.7 GB

0 10 20 30 40 50 60
0

20

40

60

80

100
Nu

m
be

r o
f a

ct
iv

e 
flo

ws
 X

10
00

Active flows
Campus Campus #4

0

20

40

60

80

100

Nu
m

be
r o

f n
ew

 fl
ow

s X
10

00

New flows
Campus Campus #4

(a) Number of active and new flows observed each second.

1 10 100 1K 10K 100K 1000K
Number of packets in flows

50%

60%

70%

80%

90%

100%

Fr
ac

tio
n 

of
 fl

ow
s 100% = 808321 flows

100% = 3283931 flows

Trace
Campus Campus #4

(b) Distribution of flow sizes.

64 192 320 448 576 704 832 960 1088 1216 1344 1472
Packet size (bytes)

0

1

2
4
8

16
32
64

Nu
m

be
r o

f p
ac

ke
ts

 (M
)

Trace
Campus Campus #4

(c) Distribution of packet sizes (in bytes).

Figure A-1: Statistics for Campus and Campus #4 traces.
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The trace capture kept the beginning of every packet up to
and including the L4 header (TCP or UDP), while dropping IPv6
packets. The trace is then randomly padded up to 128 additional
bytes or the original capture length if it is less than 128 bytes. This
randomness in the payload is added to be more realistic towards
Sprayer. Sprayer would be penalized by only zero-padded payload
as it selects the queue according to the packet checksum. When
replayed, the remaining payload is padded up to the original capture
lengthwithout changing the state of thememory, but the probability
of the remaining payload being zero is high. Statistics are gathered
by running live experiment, that is, collecting the information of

interest on the DUT. To avoid artifact of the generator, unless stated
otherwise, we replay traces with a 2 seconds speed increase at the
beginning, and a 2 seconds speed decrease at the end.

Figure A-1a shows the number of active and new flows observed
every second. Active flows are considered all established flows with
at least one packet during the last second. Figures A-1b and A-1c
show the distributions of flow and packet sizes respectively in the
Campus and Campus #4 traces. Both traces are comprised of a
large fraction of (almost) MTU-sized packets (i.e., between 1000-
1500 bytes) along with a substantial fraction of small packets (i.e.,
between 64-200 bytes).
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