
A High-Speed Stateful Packet Processing Approach
for Tbps Programmable Switches

Mariano Scazzariello1,2, Tommaso Caiazzi1,2, Hamid Ghasemirahni1,
Tom Barbette3, Dejan Kostić1, and Marco Chiesa1

1KTH Royal Institute of Technology
2Roma Tre University

3UCLouvain

Abstract
High-speed ASIC switches hold great promise for offload-
ing complex packet processing pipelines directly in the high-
speed data-plane. Yet, a large variety of today’s packet pro-
cessing pipelines, including stateful network functions and
packet schedulers, require storing some (or all the) packets
for short amount of times in a programmatic manner. Such a
programmable buffer feature is missing on today’s high-speed
ASIC switches.

In this work, we present RIBOSOME, a system that extends
programmable switches with external memory (to store pack-
ets) and external general-purpose packet processing devices
such as CPUs or FPGAs (to perform stateful operations). As
today’s packet processing devices are bottlenecked by their
network interface speeds, RIBOSOME carefully transmits only
the relevant bits to these devices. RIBOSOME leverages spare
bandwidth from any directly connected servers to store the
incoming payloads through RDMA. Our evaluation shows
that RIBOSOME can process 300G of traffic through a state-
ful packet processing pipeline (e.g., firewall, load balancer,
packet scheduler) by running the pipeline logic on a single
server equipped with one 100G interface.

1 Introduction

Network Function Virtualization is an essential architectural
paradigm of today’s networks [32]. Operators create and man-
age complex packet processing pipelines by combining to-
gether Network Functions (NFs), which are then deployed
on the infrastructure. Network functions that require sim-
ple computations are generally deployed onto cost-effective
ASIC-based switches, whereas more complex packet process-
ing computations must be deployed on expensive general-
purpose CPUs or FPGAs due to the inherent difficulty and
cost of designing complex ASIC circuits [4]. Unfortunately,
the networking stack of general-purpose servers and FPGAs
is significantly slower in processing packets than dedicated
ASIC hardware counterparts, ultimately increasing the energy
footprint and cost of operating a large network.

Deploying network functions that have to manage large
amounts of frequently changing stateful per-flow information
in a cost-effective manner (i.e., entirely on an ASIC switch)
has been an elusive goal.

To understand the requirements posed by multi-terabit per
second stateful packet processing, we analyze a set of real-
world CAIDA traces in the 2013–2019 period [6]. Through a
linear regression, we observe that i) the number of active flow
connections traversing a switch is 120 K for every gigabit of
forwarded traffic and ii) there are 4 K new flow connections
for every gigabit of forwarded traffic. This translates to 385 M
active flows and 12.8 M new flow-table insertions per second
on a 3.2 Tbps forwarding pipe. With a 17 B flow-state entry
(i.e., a 5-tuple + action), as in a Layer-4 load balancer, the
memory requirement becomes 6.5 GB, which go beyond the
stateful memory that is available on today’s ASIC chips.

In this work, we aim at designing a stateful per-flow packet
processor system that satisfies the following requirements:
• Expressiveness, by supporting a variety of complex stateful

logic (e.g., load balancers, packet schedulers).
• High Throughput, by achieving superior performance

compared to existing expressive designs.
• Dynamicity, by supporting very frequent modifications to

its stateful data structures.
• Cost Effectiveness, by reducing the costs and power con-

sumption for operating this system.
Building a system that supports the above requirements is

highly challenging. The expressiveness requirement requires
a system to rely (at least to some degree) on general-purpose
CPUs or FPGAs. We distinguish between two types of sys-
tems that require external resources:
• Systems that use dedicated external devices to realize com-

plex NFs. An example within the first category is Tiara [46],
a clever load balancer system that reroutes packets from a
switch to 16 ports that are connected to FPGAs performing
per-packet load balancer calculations. While such solutions
are expressive, they are not cost-effective. Half of the de-
vices connected to a 32-port programmable switch are used
exclusively to perform stateful packet processing operations.

This reasoning motivates the next type of approaches.
• Systems that rely on shared external devices whose re-

sources are primarily used for running customers’ appli-
cations. Such systems embrace emerging disaggregation
paradigms in which applications runs on resources that are
combined together on demand. As an example, TEA [21]
is the first system to efficiently enlarge the memory of
the switch by cleverly crafting RDMA messages to access
remote memory on shared CPU-based servers. TEA ex-
ploits the well-known large amount of spare of bandwidth
and memory resources in datacenters [23]. This design al-
lows operators to make better utilization of the resources
available on an external general-purpose server: customers’
applications run on general-purpose servers and any spare
bandwidth and memory resources are used by the switch to
store all the per-flow connection states that are required to
process terabits of traffic. Unfortunately, as we show in our
motivation section, TEA cannot support expressive network
functions, as only the state is stored on external servers
while the forwarding rules are applied on the ASIC switch,
which does not support advanced logic.

In this work, we present RIBOSOME, a system that is expres-
sive, flexible, cost effective, and achieves high-throughput
packets processing. RIBOSOME relies on two fundamental
observations. First, in a large fraction of stateful per-flow net-
work functions the bottleneck is the bandwidth between the
switch and the packet processor. For example, a load balancer
saturates a 100Gbps interface with just 3 CPU cores on a
real-world trace [12]. Second, many network functions do not
need to analyze the entire packet but only the relatively small
portion of a packet containing its headers.1 To put things into
perspective, a load balancer that operates on a 5-tuple (13
bytes) field, would only require receiving 13 B per packet
instead of potentially 1.5 KB full size packets.

RIBOSOME relies on dedicated external packet processors
to process packet headers while storing packet payloads on
shared general-purpose servers without any CPU interven-
tion (i.e., using RDMA technology). More specifically, we
leverage the advanced capabilities of emerging high-speed
programmable switches to receive packets, split them into
headers and payloads, and reconstruct them after the NF pro-
cessor has updated their headers or re-schedule their transmis-
sion. By only processing packet headers, we overcome the
bandwidth bottleneck at the dedicated devices, which allows
us to process significantly higher numbers of packets on the
same dedicated machine. As all data structures are handled
by CPUs, we support high numbers of modifications to these
data structures.

We motivate this design approach with the following ob-
servation: storing & fetching payloads are two operations
that only require simple support for writing & reading on

1We do not claim novelty for this observation but rather for the novel
trade-off achieved by the design of our packet processing architecture and
our fine-grained evaluation.

a memory. These memory operations are general, making
it attractive to offload the storage & fetching of payloads
on shared memory resources (e.g., RDMA). Using shared
resources to store payloads allow operators to make more
efficient utilization of the memory resources existing in a
network (such as a datacenter). We then rely on dedicated
resources for processing packet headers. In this case, the ratio-
nale is that the performance achievable by a stateful network
functions highly depends on temporal and spatial factors (e.g.,
high cache-locality), and is therefore less suitable to be exe-
cuted on shared resources. Finally, RIBOSOME brings benefits
when an NF only needs to inspect a small part of a packet, e.g.,
a load balancer. RIBOSOME does not bring benefits when the
NF requires access to the entire packet (e.g., a deep packet
inspection function).

We implement RIBOSOME on an ASIC programmable
switch, with FastClick [1] as the NF packet processor, and
RDMA to store payloads on other servers. We evaluate
RIBOSOME using an empirically-derived multi-100G traf-
fic trace. Our micro-benchmarks show that a general-purpose
server processes 70 Mpps on a single server, which would
correspond to 560 Gbps of traffic with 1KB average packet
size. Based on this estimate, we observe that one would need
only three 100G ports on the programmable switch to process
1.6 Tbps of traffic (whereas systems like Tiara would need 16
ports).

We also evaluate the entire system using 4 RDMA servers
and a single 100-Gbps dedicated server to process 300 Gbps
of traffic. Our results show that the bandwidth requirements
at the dedicated server are merely 20 Gbps.

To summarize, our contributions are:
• We propose a new disaggregation-based architecture to

circumvent the inherent constraints of high-speed ASIC
switches both in terms of logic and memory. We design a
system to perform stateful packet processing that carefully
splits operations between dedicated and shared resources,
where headers are processed by dedicated servers while
payloads are stored on shared resources.

• We present the first programmable buffer abstraction that is
suitable for Tbps NF packet processing.

• We make the observation that today’s deployment of NFs
onto general-purpose CPUs is severely bottlenecked by
the server bandwidth, thus motivating the splitting of the
packets into headers and payloads.

• We demonstrate a single server processes up to 70 M small-
size packets per second and the bottleneck moves onto the
PCIe. With 3 servers, one could process 210 M packets per
second, which is equivalent to roughly 1.6 Tbps of 1KB-
size packets. We discuss future optimizations to overcome
this limit with future-available hardware.

• We demonstrate in a small testbed that RIBOSOME pro-
cesses 300 Gbps using a single dedicated NF processor,
whose bandwidth requirement is just 20 Gbps.

• We demonstrate a 2.2× speedup over the state of the art for

running complex packet schedulers [11], on similar server
hardware. By doing so, we show that we have fundamen-
tally pushed the performance barrier achievable with a com-
bination of a programmable switch and commodity servers.

• We release all our P4 and FastClick code for running
RIBOSOME including a high-speed implementation of
RDMA on the Tofino programmable switch [40].

2 Motivation

We start this section by quantifying the memory and flow-
table update requirements of general ASIC switches. Based
on an analysis of real-world traffic traces, we posit that today’s
(but also next-generation) ASIC switches do not have enough
memory to support stateful per-flow NFs. We then quantify
and discuss the limitations of the state-of-the-art systems
using dedicated resources (i.e., PayloadPark [13] and Tiara)
as well as shared resources (i.e., TEA [21]).
ASIC switches have constrained memory. Several exist-
ing approaches, such as SilkRoad [31], Cheetah [3] and
SwiSh [47], propose to store the entire state required to oper-
ate a specific NF entirely on the memory available on the chip
of an ASIC switch. However, the amount of memory available
to store per-flow state on existing high-speed ASIC chips is a
renowned constrained resource that may not be sufficient for
NF applications that handle very large amounts of flows. We
run some back-of-the-envelope calculations to upper bound
the amount of state that could potentially be stored on an
ASIC using SRAM technology. Assuming one could use the
entire chip area for SRAM memory (i.e., no I/O, no buffers),
an 826 mm2 chip using 7nm technology would only store at
most 5GB of flow state in SRAM [7]. We show in this section
that this amount of memory would suffice to only store ~10%
of the state required on a multi-terabit per second switch. In
practice, the amount of memory is below this estimate as typ-
ically I/O and buffers occupy roughly 50% of the chip area
and some memory is used to implement the packet processing
logic. For example, a 16-nanometer high-speed ASIC switch
contains 1.5-15.4MB per terabit of forwardable traffic (i.e.,
10-100MB of SRAM on a 6.5 Tbps ASIC chip) [14, 29, 31].

To understand the implications of potential future trends
on the feasibility of storing per-flow state on ASIC chips,
we analyze CAIDA traces in the 2013 – 2019 period for the
NYC and CHI monitored links, for which there are publicly
available statistics [6].2 The throughput for these traces ranges
from 2 Gbps to 6.5 Gbps. Each trace contains the number of
IPv4 and IPv6 forwarded packets, their mean packet size,
the trace duration and the flows per second. The flow per
second field represents the number of distinct flows in the
trace divided by the duration of the trace.3 We define a flow to

2We select this type of traces as we do not have access to datacenter traces
at per-packet granularity (i.e., no sampling).

3We verified it by taking the Caida-nyc 2018-03-15 trace, counting the

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Trace throughput [Gbps]

0.0

0.5

1.0

1.5

2.0

M
ea

n
nu

m
be

ro
fa

ct
iv

e
flo

w
s

[x
1
0

6
]

y = (199 + 120x)× 103

Figure 1: Number of active flows in historical CAIDA traces
from 2013 – 2019 from Chicago and NYC.

be active if that flow has sent a packet in the last 30 seconds.4

If a flow is active, it means the stateful processor must keep
state for that flow. In the following analysis, we assume that
one needs to deploy a basic load balancer that stores 17 B for
each single flow (e.g., 13 B for the 5-tuple and 4 B to store the
private IP destination address). We define the mean number of
active flows in a trace as the number of active flows divided by
the duration in seconds of the trace multiplied by 30 (i.e., the
threshold to determine if a flow is active). In Fig. 1, we report
the mean number of active flows (y-axis in millions, blue
crosses) with respect to the trace throughput (x-axis) for each
single trace in the studied period. We first observe that 3 out of
53 traces already require more memory resources than those
available on a real-world pipe of a high-speed ASIC, i.e., the
traces require above 20 MB of memory as they contains more
than 1.1 M active flows.5 This means that storing state for a
real-world trace recorded at roughly 10 Gbps would require
roughly 20% of the existing memory on a 16-nm ASIC switch
chip (which is in the 10-100 MB range).

We also plot a linear regression (green dashed line) that
we use to estimate the memory requirements for a switch
transporting terabits of traffic (such as recent 25.6 Tbps
switches [5, 18]).6 The steepness of the regression line is
120 K active flows per Gbps of traffic. We estimate the mean
number of active flows on a 25.6 Tbps switch to be 3 072 M,
which would require 52 GB of memory to store the corre-
sponding state for a load balancer (i.e., 17B per flow). This
memory requirement is 300× higher than what is available
on 7nm high-speed ASIC switches today [18] and roughly
10x the maximum amount of SRAM memory realizable on a

number of flows, and dividing by the trace duration, obtaining the same
number.

4We use a 30-second threshold based on real-world timeouts used in the
Facebook Katran load balancer [9].

5This is a lower bound since we take the mean of the active flows but
peaks with higher number of active flows are likely to arise in the traces.

6The assumption may not be perfectly accurate but we do not have access
to a datacenter trace at terabits per second speed and per-packet granularity
(i.e., no sampling).

Ideal PayloadPark-like PayloadPark-like
(w/ recirculation)

0

1

2

3

4

Sw
itc

h-
to

-N
F

Lin
k

Ra
te

 [G
bp

s]

16x

0.19

3.11
2.67

Figure 2: Ideal vs PayloadPark-like on CAIDA trace.

825mm2 ASIC chip. Finally, we also note the memory on the
pipe should be used for implementing other functionalities.
ASIC switches cannot support frequent per-flow state in-
sertions from the control plane. Today’s ASIC chips support
a specific amount of modifications to their flow-tables through
the control plane [3,31]. For example, a 16-nm 3.2 Tbps ASIC
switch supports ~100K flow-table entry modifications per
second only [46]. To the best of our knowledge, this is the
highest (publicly available) table update frequency achieved
by a 16-nm ASIC switch through the control plane and we
are not aware of public measurement studies showing such
high-frequency insertions entirely in the faster data-plane of a
multi-Tbps ASIC switch. Based on our analysis of the afore-
mentioned CAIDA packet trace, we observe that the number
of rule modifications is lower bounded by the amount of flows
per second. Based on a similar regression, we obtain that the
number of flow insertions per second grows by 4 K per Gbps
of traffic. When we use this linear regression to estimate the
amount of flow insertions on a 3.2Tbps ASIC switch, we ob-
tain 12.8 M per-flow insertions per second, which is roughly
100× higher than the aforementioned 100 K flow-table modi-
fications using an ASIC switch.

Now that we have quantified the amount of memory re-
sources required to store the per-flow state of an NF, we
discuss advantages and limitations of the three main state-
of-the-art approaches to implement NF processors on top of
programmable network hardware. We focus on the work that
closely relates to our system and we defer the reader to Sect. 8
for a broad discussion of the existing related work.
NIC-based approaches that split packets are bottlenecked
by the NIC speed. The nicmem system [35] is an NF acceler-
ator that resides completely on a general-purpose server and
does not involve any programmable switch. A packet arriving
at the Network Interface Card (NIC) of a nicmem-equipped
server is split into a header that is sent to the CPU cores and
a payload that is stored on the small NIC memory. This ap-
proach comes with several benefits: higher hit cache ratio as
payloads do not pollute CPU caches and 80% higher packet
processing throughput. The inherent limitation of this work
is that the throughput of the NF server is limited by the NIC
speed (e.g., a 100 G NIC can only process 10 M packets with
size 1.25 KB). To process 800 Gbps of traffic, nicmem must
connect to 8×100G ports on the switch. In this paper, we

argue that an NF server should only receive the relevant bits
(e.g., the packet headers). This approach reduces bandwidth
overheads toward external NF servers, reducing the number
of ports on the switch that must be connected to dedicated
resources. The remaining ports can be used for connecting the
switch to other shared resources (where the payloads could
be buffered) or devices. Moreover, traditional server- or NIC-
based approaches (including nicmem) force the storage of
the payload to be performed on the same machine that pro-
cesses the header. Conversely, RIBOSOME decouples these
two operations and it leverages spare memory resources in
the network for performing the simpler payload storage.
Storing payloads at the switch does not mitigate band-
width overheads. The PayloadPark [13] system also splits
headers from payload but performs this operation directly
on a programmable switch instead of the general-purpose
server. The benefits of splitting a packet at the programmable
switch instead of doing that at the server (as in nicmem) is
that one can forward just the headers to the servers and store
the payloads on the programmable switch. To implement
a load balancer, a server could receive just 13 B from each
packet (i.e., the 5-tuple), thus potentially processing almost
one billion packet headers per second through a 100 G in-
terface. Unfortunately, PayloadPark suffers from an inherent
constraint of high-speed ASIC devices. First, it is not pos-
sible to store the entire payload of a packet into the switch
memory in a programmable manner.7 Consequently, Payload-
Park only stores the first 160 (352) bytes of payload for each
packet without (with) recirculating it, thus letting most of the
payloads still going to the external server.

To quantify the reduced performance gains, we have ana-
lyzed again the aforementioned CAIDA trace for three sce-
narios: i) when only a 54-byte header is sent to an external
NF server, which we call Ideal, ii) when only 160 bytes of
payloads are removed from the packet sent to the external NF
server, which we call PayloadPark-like, and iii) a PayloadPark-
like system that recirculates packets to store 352 bytes. Fig. 2
shows the link rate in Gbps between the switch and the exter-
nal NF server (y-axis) for the three aforementioned systems.
The ideal system requires 16× and 14× less bandwidth than
the PayloadPark-like system with and without packet recir-
culation. We note that producing ASICs that would store
larger parts of the packet in a programmatic manner would
become significantly more complex and expensive [4] and are
therefore neither available today nor in the near future.
Desiderata: large external memories shared with other ap-
plications. The goal of our work is to overcome the inherent
limitations of ASIC switches and find an alternative design
that keeps bandwidth requirements as close as possible to
the ideal bar in Fig. 2. Since the memory on a switch cannot
be used to store payloads in a programmatic manner, we fo-

7The payload is temporarily stored by the switch while the headers are
being processed.

cus our attention to leveraging external unused resources that
are shared with customers’ applications. As storing payloads
only requires storing information into memory (without any
complex logic), we focus our attention onto RDMA technol-
ogy to store and retrieve payloads between a programmable
switch and a set of external servers that are deployed to run
customers’ applications. Leveraging RDMA from a Tofino
switch is not a new idea per-se as it has been already explored
in TEA [21], a network function accelerator, and Dart [24],
a monitoring system. We now discuss existing limitations
of TEA, which will motivate our design. We note that some
limitations of TEA are due to its design while some others
are related to the functionalities that are today available on
ASIC switches.
TEA cannot run complex NF logic such as packet sched-
ulers. TEA [21] is the first framework to implement NFs using
a programmable switch and leveraging additional RDMA-
accessible memory to store per-flow state. In TEA, a packet is
forwarded from the switch to the RDMA server that stores the
rule used to process the packet. Both the packet and the rule
are forwarded back to the switch, where the rule is applied to
the packet. Unfortunately, this design does not support more
complex per-flow network functions (e.g., advanced load bal-
ancers, batch-based NF processing, etc.) since the only logic
that can be performed in TEA is the one that is supported by
the switch. For example, TEA cannot support advanced per-
flow packet scheduler such as Reframer [11], where packets
arriving at an NF are buffered for a few tens of microseconds
and are then reordered to increase their per-flow spatial local-
ity (i.e., placing packets belonging to the same flow close to
each other). The reason why TEA cannot support such NFs
is that TEA can only "buffer" a single packet while reading
its rule but it cannot buffer arbitrary sets of packets in a pro-
grammatic manner. We are not aware of any existing ASIC
switch supporting such programmable buffers for packets.
TEA cannot handle per-flow rule insertions at high speed.
When a new packet of a flow arrives at the switch, TEA states
that “since it takes some time to complete an insertion op-
eration, new entries are first inserted in to an SRAM stash”.
However, the insertions into the Stash are performed through
the control-plane, which is renown to take up to 1ms to per-
form insertions [31].8 In any case, the limit of flow-table
insertions per second derived in Tiara [46] also applies to
any table modification on TEA, which severely undermines
the ability of TEA to perform a large number of flow-table
insertions per second.
In the remaining sections, we address the following question:

“Can we design an NF packet processor that retains the
high-throughput of an ASIC switch while supporting

dynamic per-flow stateful network functions in a
cost-effective manner?”

8We do not have access to the original P4 code of TEA.

3 System Design

We now present an overview of RIBOSOME, a NF accelerator
for stateful per-flow packet processing that relies on a novel
design to overcome the limitations of existing architectures
based on programmable switches and external devices.
Design space. We first divide the design space into i) systems
built entirely within a switch and ii) systems using external de-
vices. In the first category, realizing stateful packet processing
entirely using ASIC-based switches is out of reach because
of both memory limitations and limited modifications per
second to the stateful data structures. In the second category
(i.e., systems with external devices), we further divide into
two categories: a) systems that only use external dedicated
resources and b) systems that also rely on external shared
resources. In the following, we discuss these two types of
systems and we refer the reader to Table 1 for a summary of
the architectural and communication overhead differences

The table covers three types of operations (i.e., the process-
ing of the header, the storage of the packet, and the splitting
and merging of the packet with the header (if any)) as well as
the communication overheads in terms of bits and number of
packets transmitted to the NF and the shared servers for each
incoming packet at the switch.

Delegating all stateful packet processing functionalities
to dedicated external FPGAs or CPUs (e.g., Tiara [46],
nicmem [35]) results in a high utilization of the switch ports
to interconnect the external dedicated devices (i.e., to pro-
cess 800 Gbps of traffic, 8x100G ports on a switch must be
connected to dedicated devices). PayloadPark [13] reduces
bandwidth requirements toward externally dedicated devices.
However, it only saves 1280 bits of bandwidth per transmitted
packet, which only slightly reduces the number of ports on
the switch that are connected to dedicated devices when the
average packet size of a trace is in the 1 KB range.

Leveraging shared resources mitigates these overheads as
ports on a switch can be connected to devices running other
types of computations. Some recent work (e.g., TEA [21])
delegates the storage of payloads on shared memory while
relying on the switch to run the stateful packet processing
logic. However, the logic implementable on an ASIC switch is
limited (e.g., no batch-based stateful processing as in packet
schedulers or rate limiters). Moreover, it is difficult to use
CPU-bypass technologies like RDMA to insert per-flow state
inside the external server memory because RDMA only sup-
ports basic primitives (e.g., Read, Write) and cannot be easily
used to perform insertions at high-frequency [37]. Striking the
correct balance in the usage of dedicated and shared resources
and the architectural choices is the main goal of this section.
Our design principles. In this work, we explore a trade-
off in the design space between the usage of dedicated and
shared resources to accelerate stateful packet processing. Our
observation from Sect. 2 is that any stateful packet processing
should support i) high-speed insertions into per-flow state data

Operations Communication overhead (per packet)

Header Payload Split & NF server Shared server
processing store merge [bits, # pkts] [bits, # pkts]

Traditional NF server NF server - pkt.size, 1 -

nicmem [35] NF server NIC NIC pkt.size, 1 -

Tiara [46]
NF server

server CPU
FPGA and

- pkt.size, 1 -(fast path on
FPGA on NIC)

PayloadPark [13] NF server switch switch pkt.size - 1280 b, 1 -

TEA [21] switch RDMA server - - pkt.size, 2

RIBOSOME NF server RDMA server switch pkt.header, 1 pkt.payload, 2

Table 1: Qualitative comparison among existing systems in the design space and RIBOSOME.

structures (in the order of tens of millions per second) and
ii) more complex stateful logic (e.g., batch-based processing)
when deployed on a multi terabits per second switch. Our
design is inspired by the following principles:

• Offload complex logic to dedicated devices. As ASIC
switches support a limited number of flow-table updates per
second and provide limited memory space, we argue that
non-trivial network functions, whether for inserting high
volumes of per-flow entries into the per-flow data struc-
tures or processing packets in a batch (e.g., for scheduling),
should be realized on dedicated general-purpose servers.

• Process only relevant bits. Our design targets network
functions (e.g., load balancers, NATs, rate limiters, packet
schedulers) that do not require inspecting the entire packet,
but rather just a few bytes such as a flow identifier. We there-
fore propose to only send the relevant bits to the dedicated
general-purpose servers and store the payloads on shared
servers while the headers are being processed. Splitting
headers is not a new idea per-se (see [13, 35]), however
we leverage it in such a way that the large gains material-
ize in practice, as shown in our evaluation section. Notice
that our design also provides the possibility to disable the
packet splitting for specific traffic classes. This allows the
coexistence between RIBOSOME and NFs that require fully
inspecting packets.

• A programmable buffer on shared resources. ASIC
switches (including programmable ones) do not provide an
interface for buffering packets in a programmatic manner.
Packets are stored either while their headers are processed
through the pipeline or in port queues. We argue that a net-
work function system should be able to buffer packets in a
programmatic manner, operate on batches of packets and
schedule their transmission (to a certain degree of granu-
larity, see Sect. 4). We rely on RDMA to bypass CPU and
avoid wasting CPU cycles on shared machines. Note that
our approach does not rule out the possibility of accessing

1. Header + Payload . Programmable
Switch

2a. Process Header

5. Processed Header + Payload

3. Store Processed Header

2b. Store Payload 4. Retrieve Payload

NFNFNF packet
processor

RDMA
Server
RDMA
Server

RDMA
Server

Figure 3: RIBOSOME overview.

other types of memory for storing payloads. We embrace
disaggregation paradigms where the storage of payloads
is performed on any shared memory resources in the net-
work. As an example, switches could potentially support
a programmable interface to store and fetch packets in an
internal DRAM or HBM.
To summarize, the main benefits of RIBOSOME are that

it relies on dedicated devices only for realizing the NF pro-
cessing logic and delegates the storage of the payload on
external RDMA servers. RIBOSOME does not use any CPU
cores on these RDMA servers. It only shares memory and
NIC bandwidth with applications running on these servers.
The benefits of RIBOSOME come with a cost: doubling the
number of packets in a network since each packet will be split
into a header and a payload packet.
System overview. RIBOSOME consists of a high-speed pro-
grammable switch, a set of dedicated external NF packet
processors (e.g., CPUs, FPGAs) and a set of shared servers.
We leverage recent advancements in high-speed ASIC pro-
grammable switches [19], CPU-bypass memory storage
(i.e., RDMA [17]), and NF-specific CPU compiler optimiza-

tions [10] to design a system where dedicated packet pro-
cessors only process the relevant portions of a packet while
their payloads are stored on RDMA servers. We show a di-
agram of the high-level RIBOSOME architecture in Fig. 3.
The programmable switch receives incoming packets (step
1) and splits each packet whose size is above a predefined
threshold into a small header and a larger payload chunks.
The programmable switch assigns an ID to both the header
and the payload chunks. The switch assigns increasing IDs
to each received packet within a predefined range (in a mod-
ulo manner). The switch forwards the header of the packet
to one of the external NF packet processors (step 2a) and
the payload to one of the shared servers (chosen hashing the
flow 5-tuple) using RDMA (step 2b). The NF packet proces-
sors store the per-flow state needed to process any incoming
packets. The NF uses this state to transform each incoming
header into a new processed header, which is sent back to the
programmable switch where it is stored on its small memory
using the header ID as an index into an array in the switch
SRAM memory (step 3). After storing a packet header, the
programmable switch retrieves the corresponding payload
from the RDMA servers (step 4). The programmable switch
combines then the payload with the stored header using the
ID and outputs the transformed packet (step 5).

We now discuss the different relevant operations and com-
ponents of RIBOSOME, focusing on the main design chal-
lenges and our proposed solutions.

3.1 Splitting and Merging Packets
Deciding i) how many bits of a packet should be sent to
the NF processor, ii) when a packets should be split into a
header and payload, and iii) how to store the headers before
the payloads are recollected are all questions that affect the
overall performance of the system.
Challenges. Splitting a packet into a header and payload bring
several benefits: it reduces both bandwidth overheads and
cache pollution on the dedicated resources. However, split-
ting a packet also comes with some overheads: when we split
a packet, i) we need to process a higher number of packets on
the switch and ii) we need to use the switch memory to store
the headers before recombining them with their corresponding
payloads. More specifically, a single incoming packet arriving
at a switch requires two packet processing if the packet is not
split (i.e., forwarding the packet to the NF and forwarding the
modified packet from the NF to the output port) whereas a
packet that is split results in 4 packet processing operations
(i.e., forwarding the header to the NF, forwarding the pay-
load to the RDMA server, forwarding the NF response to the
RDMA server to retrieve the payload, forwarding the recom-
bined payload on the output port). Moreover, RDMA comes
with limits on the number of operations per second that it
can perform, which means transmitting small payloads may
overload the server NICs without bringing any meaningful

performance improvement.
Our approach. We devise a mechanism in RIBOSOME that
splits a packet based on a threshold. There are two key thresh-
olds in RIBOSOME: one threshold to specify when a packet
should be split and one threshold to specify how many bits
should be sent to the NF. We split packets at 72 bytes, con-
sidering the minimum Ethernet frame size of 64 bytes plus
8 bytes of additional custom RIBOSOME headers. Notice that
the split threshold is configurable depending on the use case.9

RIBOSOME does not need to store any information on the
switch when the packet has been split. Our system stores
an header received from the NF on an array in the switch
SRAM memory. Every time we split a packet, the switch
increases the array index by one (modulo size of the array).
This information is carried over in the header and the payload.
When the header comes back to the NF, it is stored in the
switch memory, and it also issues an RDMA Read Request to
retrieve the corresponding payload.

The headers are stored until either i) the payload comes
back to the RDMA server or ii) a new packet header is stored
at the same array index, i.e., the index pointer looped over the
array size. We micro-benchmark the RDMA Read Request
time (see Appendix F), finding that the maximum latency is
at 4µs (with a 4096B payload). At 1.6 Tbps with an average
packet size of 1 KB, this means we only need to store less
than 800 headers in the array without risking to overwrite
any header and combining it with the wrong payload. We
configure the array with a size of 2K entries, which is large
enough to guarantee that when the payloads come back, the
header has not been replaced by a different header. By storing
only 72 B of the packet header, RIBOSOME requires less than
60 KB of SRAM to store all the headers.

Our approach brings a significant advantage compared to
alternative switch-based approaches like PayloadPark [13].
RIBOSOME only stores headers while retrieving payloads
using RDMA, while PayloadPark must store payloads while
waiting for the NF to process the headers. We observe that
RDMA has more deterministic and lower response time than
arbitrary NF processors. For instance, Batchy [25] reports
processing times ranging from 100s of µs to few milliseconds
to process a packet even for NFs that only look at packet
headers (no heavy intrusion detection systems). At 1.6 Tbps
with an average packet size of 1 KB and a response time of
1 ms, PayloadPark would need to store 185 MB of payloads,
almost 10× the available memory on a 3.2 Tbps pipe.
Avoiding RDMA memory collisions. Packet payloads are
stored contiguously in the external memory and are retrieved
with the information contained in custom headers, hence there
is no chance that two packets close in time read the same
memory chunk. RIBOSOME conceptually uses the RDMA

9Ideally, the switch would only extract the bits relevant for a specific NF
and batch the bits extracted from different packets into a single packet that
is sent to the NF. Unfortunately, creating such batches is not supported by
today’s ASIC switches. We leave such optimizations as future work.

memory as a circular ring buffer, with a size provisioned large
enough to prevent collisions.
Exploiting spare bandwidth on the RDMA servers.
RIBOSOME leverages shared servers as remote buffers and
it is therefore critical to use only the spare bandwidth of
the server links without affecting the hosted services. Thus,
RIBOSOME includes a control-plane mechanism that moni-
tors the link bandwidth. When a link carries above a user-
configured back-off RDMA threshold, the system stops send-
ing payloads to the overloaded server.
Packets-per-second overhead. As RIBOSOME split packets,
it also doubles the number of packets-per-second to be pro-
cessed on both the switch (where we split the packets) and
across the NF and RDMA-enabled devices when compared
to a traditional approach. This is an inherent cost of splitting
packets that is part of the RIBOSOME architecture. Table 2
compares per-packet processing overheads on each single
component of three different NF approaches: i) Traditional
NF processing where a switch sends the entire packet to an ex-
ternal NF processor, ii) a Payload-on-Switch (PoS) approach
in which the payload is entirely stored on the switch (e.g., Pay-
loadPark), and iii) RIBOSOME. As it can be seen, RIBOSOME
has the highest overhead. We first discuss the overhead on
the switch. We note that several ASIC switches today support
line-rate forwarding for small packets (e.g., 300-Byte packets
on general switches [18]). This means that RIBOSOME would
support line-rate for packets with doubled size (e.g., 600-Byte
packets). This seems a reasonable trade-off in RIBOSOME
as splitting a packet brings substantial benefits only when
the packet is large-sized. As for the dedicated NF and shared
RDMA-enabled servers, the number of PPS handled by the set
of all these servers is twice as in a traditional approach. More
specifically, the number of PPS handled by the NF servers is
equal to that of the shared RDMA-enabled servers.

Trad. PoS RIBOSOME
Switch 2/2 2/2 3/4

NF Server 1/1 1/1 1/1
RDMA Server - - 1/1

Table 2: Number of RX/TX packets for each approach (tradi-
tional, store payload on the switch, and RIBOSOME) in each
component for each processed input packet.

3.2 High-Speed Reliable RDMA

To obtain a high-speed reliable RDMA implementation from
the programmable switch, RIBOSOME has to overcome two
main technical challenges. To support both RDMA Write and
Read operations, Queue-Pairs (QPs) (virtual queues always
composed of a send and a receive queue used to manage con-
nections) must use the Reliable Connection transport mode.
In this mode, the QP sends an acknowledgement for each

packet received correctly, or a Nak in case of transmission
problems. Detecting and recovering an RDMA Nak from a
programmable switch is complex. For instance, receiving a
PSN Error Nak would require transmitting the Nak-ed packet,
and it is infeasible to store pending requests on the switch
memory (especially RDMA Write operations that could con-
tain a payload up to 4096 B). It is even more complex to
recover from an Invalid Request Nak, triggered when the max-
imum number of outstanding RDMA Read Requests limit
is reached. In fact, Infiniband specifications [42] limit the
maximum number of outstanding Read Requests targeting a
responder QP at any one time to a fixed amount (that is 16
with Nvidia Mellanox ConnectX-5 NICs [33]). To recover
from this error, the QP state must be entirely reset.

We present a mechanism for recovering from the aforemen-
tioned failures with a minimal drop of packets in Appendix C.
Moreover, we show in Sect. 5 how it is possible to handle
multiple QPs, incrementing the maximum number of out-
standing Read Requests, using a lower level API available
within InfiniBand verbs [28].

4 Supporting Advanced Network Functions

Several common per-flow stateful operations require either
batching a set of incoming packets (e.g., [11, 25]), or keeping
track of highly frequently arriving connections (e.g., load bal-
ancers, NATs). In the following, we discuss three use cases for
RIBOSOME that leverage advanced NFs whose logic would
be difficult to realize on today’s ASIC switches with large
amounts of flows.
Stateful Load Balancers and NATs. Stateless load balancers
suffer from high load imbalance [3] while software load bal-
ancers such as Maglev [8] must rely on many servers to re-
member which servers are taking care of every new selection.
In RIBOSOME, we support stateful load balancers by storing
the per-flow state on the NF processors and sending the head-
ers of all packets to these processors. The main challenge is
to support both high-throughput with millions of connections
(which may not fit in the CPU caches) and forwarding rule in-
sertions in the order of millions per second. In RIBOSOME, we
use per-core Cuckoo++ [41] hash-tables, which have demon-
strated superior performance [12]. The state management is
using the recent FastClick’s flow system, which finds a min-
imal per-flow state layout and handle state allocations and
releases [2]. We support NATs similarly to load balancers.
Advanced per-packet software telemetry. Network teleme-
try is an indispensable component of today’s networks, for
both traffic optimization and security. Traditional monitoring
tools such as NetFlow [16] rely on packet sampling and ag-
gregation to perform off-path monitoring of the traffic, where
“off-path” refers to the fact that network events are not de-
tected on the data-path. Per-packet software monitoring has
been proposed in *Flow [44], which however is also off-path,

thus cannot support advanced NFs. Emerging data-plane ap-
proaches such as ElasticSketch [45] detects network events
directly in the ASIC data-plane using approximate data struc-
tures. However, ASIC switches have constrained memory
for storing information about all flows. Through RIBOSOME,
an operator leverages the large server memory to monitor
in software and on-path all the packets processed by other
advanced network functions, including load balancers and
packets schedulers, which we discuss next.
Packet Schedulers. Packet schedulers are an example of
network functions that determines the rate at which a flow or
a traffic class should transmit traffic on a port or a destination
server. Most importantly, they only need to inspect the packet
headers and buffer packets for a limited amount of time (e.g.,
on RDMA servers), which fits well within the RIBOSOME
design. Realizing a per-flow packet scheduler on a hardware
switch is hard for a number of reasons. Switches typically
offer basic packet scheduler policies that scale to few traffic
classes (up to 32 in general [43]). Realizing packet schedulers
at the per-flow granularity or for more than 32 traffic classes
is therefore hard to realize entirely in hardware.

RIBOSOME supports packet schedulers at the per-flow gran-
ularity, for instance, it support a per-flow leaky bucket rate lim-
iter and the advanced Reframer [11] scheduler. RIBOSOME
guarantees that packets belonging to the same traffic class
leave the switch in the desired order. The main challenge
in building a packet scheduler on RIBOSOME is that even
if the NF processor reorders packets, there is no guarantee
those packets will be output in the correct order from the
RDMA servers. In fact, an RDMA Queue-Pair guarantees
RDMA Read Request are served sequentially but Read Re-
quests spread over different Queue-Pairs are not. Our key intu-
ition is to guarantee that payloads of packets belonging to the
same traffic class are read from the same RDMA Queue-Pair.
The maximum throughput at which RIBOSOME guarantees an
ordering of packets in a traffic class is limited by the hardware
throughput of an RDMA Queue-Pair.
Example with a Reframer packet scheduler. We show an
example of our approach implementing the Reframer packet
scheduler [11]. Reframer is a NF that buffers packets for tens
of microseconds and reorders them so that packets belonging
to the same flow are transmitted back-to-back. We show that
this functionality can be implemented on top of RIBOSOME.

Consider Fig. 4, where the RIBOSOME switch receives 8
packets from four ports belonging to four flows called A (black
squares), B (yellow squares), C (blue squares), and D (green
squares). Assume flows A and B are mapped to core 1 of the
NF and they should be forwarded on port 1 of the switch
while flows C and D are mapped to core 2 and they will end
up on port 2. The switch is connected to one RDMA server
which has 2 active Queue-Pairs; hence, all the payload data
will be written on the same RDMA server. We use dashed
orange (green solid) arrows to denote packets moving from
the switch to external entities (from external entities to the

multi-core
NF server

ou
tg

oi
ng

 tr
af

fic

in
co

m
in

g
tr

af
fic

splitter header storage rebuilder

programmable switch

B

A

C

D

C

A

CB

D

A
B
A
D
C
B
D

core 1 core 2

A
C
A
B
C
D
B
D

D
C
D
C

D
D
C
C

B
A
B
A

B
B

A
A

he
ad

er
s

D

C
D

C

D
D
C
C

B

A
B

A

B
B

A
A

RD
M

A
re

ad
s

D B D C B A C A
BBA A

DDCC

1

2

RDMA server

QP1 QP2

Figure 4: Supporting packet schedulers with RIBOSOME.

switch). The packets are initially split into a header that is
forwarded to the NF server and a payload that is stored on
the RDMA server (this RDMA Write operation is not shown
in the figure). The headers will traverse the NF link in any
extension of the partial order in which they arrived at the 4
ports. The switch tags headers with information about which
RDMA server is used to store packets content (in this case,
we have only one RDMA server and all packets have the same
tag) 10. On the NF side, core 1 (core 2) receives a sequence
of packets < B,A,B,A > (< D,C,D,C >) and reorders it into
< B,B,A,A > (< D,D,C,C >). To avoid Queue-Pairs over-
loading and to preserve packets ordering, the NF is enabled to
add a new tag to packets determining the preferred Queue-Pair
index for reading the content from the RDMA server. In this
scenario, core 1 tags packets with QP1 and core 2 tags packets
with QP2. Finally, the NIC forwards these headers back to
the switch, possibly interleaving packets from the two cores.
When packets arrive at the switch, the headers are stored in
the order in which they are received and the corresponding
RDMA Read Request are generated according to tags added
by the NF cores. As a result, the RDMA server receives the
Read Requests in two Queue-Pairs exactly in the order in
which the corresponding NF cores have generated them. The
payloads also return in the same order of the Read Requests.

5 Implementation

We implemented RIBOSOME’s data plane in P4_16 language
and compiled it to a Intel Tofino ASIC [19]. The server pro-

10We encode this tag in the MAC destination address which gives the
flexibility to users to dispatch packets among cores based on corresponding
RDMA servers if it is needed.

cess that manages RDMA connections and remote buffers is
written in C++, using Infiniband Verbs [28].

Server Connection Establishment. For initializing a con-
nection with the switch, the server agent takes as input the
Infiniband interface name and the Server ID (an incremental
index that starts from 0). It allocates a memory buffer enabled
for remote write/read access. The process sends to the switch
all the information to identify the connection using several
different custom Ethernet frames (described in Appendix E).

The switch saves this information in different registers
(base_addr, rkey, mac, and ip), using the Server ID as index.

After this initial setup, the process creates a user-defined
number Nqp of Queue-Pairs. Each QP qi (i= 0, . . . ,Nqp) is cre-
ated using the Reliable Connection transport mode. A unique
local Queue-Pair ID Lqi is assigned by the NIC. Instead of
pairing qi with a remote QP, RIBOSOME fakes the connec-
tion to a remote endpoint, avoiding the need of a second
Infiniband-capable device. A fake remote Queue-Pair ID Rqi

is computed using the formula Rqi = i+(Server_ID ∗Nqp).
The remote and local initial PSNs are set to 0. At this point,
the server sends the Queue-Pair information to the switch
with a Server Queue-Pair Info frame, containing Lqi and Rqi .
The switch stores Lqi in the qp register at index Rqi , it writes
the enabled_qp register at index Rqi , enabling the QP, and it
also sets the register psn to 0 at the same index Rqi .

RIBOSOME Headers. RIBOSOME uses two custom headers,
that contain information needed to retrieve a payload and
merge it with its correct headers. We provide a description of
the headers and their fields in Appendix E.

Splitter. When a packet is received on a RIBOSOME enabled
port, the switch checks that the length of the packet is higher
than a definable threshold. If it is under the threshold, the
packet is not split and sent to the NF. Otherwise, the switch
applies a hash function (on a 4-tuple composed of SrcIP, DstIP,
SrcPort, DstPort) to index a Match-Action Table to select the
server and the index i of the QP qi that will store the relative
payload. This ensures that payloads of the same flow will be
managed by the same server and QP, and avoids reordering
packets belonging to the same flow. The switch reads the
enabled_qp register: if the QP is not enabled (equal to 0), the
packet is sent to the NF without splitting it. Else, the switch
retrieves (using i) the server data from mac, ip, base_addr
and rkey registers. The packet is then transformed into a
RoCEv2 RDMA Write. The PSN field of the BTH header is
set by reading and incrementing the register psn at index i.
The switch also appends the Header Info, selecting an index
h where the header will be stored after being processed by
the NF. It also appends the exact padding bytes to align the
payload to a 4-byte boundary. The packet is mirrored to the
Egress pipeline, where it is truncated to the header size. The
switch appends both Payload Info and Header Info, that will
be used for reconstructing the packet after the NF processing.

We show a high level overview of the flow in Appendix D.

Rebuilder. When the switch receives a processed header from
the NF, if it contains the Payload Split header, it means that
the packet must be reconstructed, else the packet is normally
routed. Before reconstructing the packet, the switch saves the
processed header into several registers hdrs at the index h
specified by the Header IDX field in Header Info. The packet
is then transformed into a RoCEv2 RDMA Read Request.
The switch reads the Payload Info header and retrieves the
index i to read the information of the server that contains the
payload (mac, ip, and rkey registers). The PSN field of the
BTH header is set by reading and incrementing the register
psn at index i. The switch fills RETH header with the Payload
Address and Payload Length fields stored in Payload Info.

The RDMA Read Request is sent to the corresponding
server, which answers with an RDMA Read Response con-
taining Header Info and the payload. The switch parses the re-
sponse, reads h from the Header IDX field of Header Info and
uses it to load the right header from registers hdrs. It removes
the additional padding and prepends the processed header, re-
constructing the entire packet that is normally routed. The
reconstructed packet is 4 bytes longer than the original one
as the switch cannot remove the ICRC appended by RoCEv2.

We show a high level overview of the flow in Appendix D.
Spare Bandwidth Exploitation. To ensure that RIBOSOME
uses only the spare bandwidth of the shared servers with-
out affecting hosted services, we implement a control plane
mechanism that monitors the actual usage of the links. If
the per-port bandwidth usage is under a configured back-off
RDMA threshold, RIBOSOME uses the link for storing pay-
loads in the remote memory of the server. Instead, if the port
usage is above the threshold, the switch stops using that link
for payloads, preserving the bandwidth for services. In this
case, RIBOSOME remaps the Match-Action Table that selects
QPs and servers, equally redistributing the entries of the over-
loaded server among the others. When the port bandwidth
usage goes below the threshold, RIBOSOME restores the orig-
inal mapping of the table, re-enabling the server.

6 Evaluation
RIBOSOME is the first programmable buffer abstraction that
is suitable for Tbps advanced NF packet processing. It per-
forms stateful packet processing, carefully splitting operations
between dedicated and shared resources, dedicated servers
process headers and servers hosting customers’ services store
payloads without CPU interference. In this section, we demon-
strate the performance gains achievable by RIBOSOME. All
scripts, including documentation for full reproducibility, are
available [39]. We aim to answer five main questions:
• “How much RIBOSOME improves the per-packet through-

put and latency gain on the NF server?”
• “How does the packet size impact the throughput gains?”
• “Can we build advanced NFs on top of RIBOSOME?”
• “What are the overheads on the RDMA servers?”
• “How many ASIC resources does RIBOSOME require?”

RIBOSOME’s data plane is deployed on a 64×100 Gbps
Stordis BF6064X with Intel Tofino ASIC [19]. Four of
its ports are connected to a 32 × 100 Gbps Edgecore
Wedge100BF-32X with Intel Tofino ASIC. Four commod-
ity servers run the server agent and are equipped with In-
tel®Xeon®Gold 6140 CPU @ 2.30GHz and Nvidia Mel-
lanox ConnectX-5 NICs [33]. All CPUs are set at their nomi-
nal frequency. The testbed is wired with 100Gbps links. The
experimental setup is depicted in Appendix A.
Workload generation. To generate different loads, we use an
additional server equipped with Intel®Xeon®Gold 6140 CPU
@ 2.30GHz, and Nvidia Mellanox ConnectX-5 NICs [33],
connected to the 32-port switch. The switch multicasts
the incoming traffic to three ports unless stated differently.
We inject both synthetic and real-world traffic traces using
FastClick [1]. Another server with the same hardware runs
different NFs, also implemented in FastClick. All the experi-
ments are repeated 3 times.

6.1 Throughput and Latency Gains

RIBOSOME enables multi-100G packet processing. Fig. 5
shows the throughput of the NF (in pps) and the output
throughput of the system (in Gbps) for three systems: a base-
line where the NF receives the entire packet (dashed-dotten
orange line), a PayloadPark-like system that removes 160
bytes of a payload when transmitting a packet to the NF
server (dashed light blue line), and RIBOSOME (solid dark
blue line). The average packet size is 1KB. The x-axis is the
packet rate injected by the traffic generator (in Mpps). The
baseline rapidly saturates the available 100 Gbps link band-
width, consequently capping the NF throughput to this rate.
The PayloadPark-like performance shows that only a limited
increase in throughput can be achieved as the switch can store
just a small part of the payload. RIBOSOME achieves higher
throughput by sending only the headers to the NF, showing
the system can keep up the processing of the 300Gbps in-
put traffic. We note that only ~75 Gbps of payloads can be
handled by the RDMA NICs in our testbed due to RDMA
overheads. Therefore, the 300 Gbps of generated traffic is
limited by the 4 RDMA servers. So in order to process 1.6
Tbps of traffic, RIBOSOME would need to be connected to
22 shared RDMA-enabled servers. The gains for this simple
forwarding NF could potentially be even higher by deploying
more RDMA servers, which we could not do in our testbed.
RIBOSOME improves latency. While one would expect de-
laying packets to recover the payload through RDMA takes
time, the advantage of reducing the queue sizes and the trans-
mission rate at the NF compensates. In Fig. 6, we show the
median latency (y-axis) with respect to the input rate (x-axis).
Even at a medium input rate, the latency of the baseline sys-
tem (which does not split packets) increases, while the latency
of RIBOSOME is kept constant, achieving a 4× gain. We also
verified that tail latency follows a similar trend: the baseline

0 5 10 15 20 25 30 35
Input Packet Rate (Mpps)

0

10

20

30

Ou
tp

ut
 p

ac
ke

t r
at

e
(M

pp
s)

Ribosome PayloadPark-like Baseline

0 5 10 15 20 25 30 35
Input Packet Rate (Mpps)

0

100

200

Ou
tp

ut
 th

ro
ug

hp
ut

 (G
bp

s)

Ribosome PayloadPark-like Baseline

Figure 5: Bandwidth advantage of sending only headers to a
forwarding NF, 1024 B packets.

reaches up to ~500 µs tail latency because of the queuing
happening on the NF server, while Ribosome maintains a
constant ~60 µs latency.11

10 20 30 40 50 60 70 80 90
Input Rate (Gbps)

0

25

50

75

100

125

 M
ed

ia
n

la
te

nc
y

(μ
s) Ribosome

Baseline

Figure 6: Median RTT latency for 1024 B packets sent by the
generator to a forwarding NF under varying input rate.

RIBOSOME retains high performance regardless of the
input packet size. Fig. 7 shows the output throughput (y-
axis) of our baseline forwarding NF that does not split packets
(dashed line) and RIBOSOME (blue line). The x-axis is the
packet length in bytes. The split threshold is set to 64 bytes.
Varying the packet size does not affect the overall throughput
as the NF is still capable of processing 300 Gbps. Moreover,
this also demonstrates that RIBOSOME is highly effective for
the relevant real-world scenarios, where the average packet
size ranges between 500 and 1K bytes [6]. We reach 300 Gbps
of throughput already with 400 B packets (i.e., 93Mpps). This
graph demonstrates that the bottleneck with 1KB packets is
not the CPU but rather the limited number of RDMA servers.
We hypothesize that RIBOSOME could potentially operate

11Fig. 11 in Appendix B shows 99th percentile tail latency.

above 600Gbps (75Mpps) with a simple NF forwarder.

200 400 600 800 1000
Packet length (B)

0

100

200

300

Ou
tp

ut
 th

ro
ug

hp
ut

 (G
bp

s) Ribosome
Baseline

Figure 7: Bandwidth gain according to packet length.

6.2 Advanced Network Functions

We have successfully integrated and evaluated the three appli-
cations presented in Sect. 4 within RIBOSOME. Fig. 8 shows
the RIBOSOME output throughput (in Gbps, y-axis) for the
Reframer [11] advanced packet scheduler (blue solid line), a
per-flow rate limiter (light blue dashed line), and a Layer-4
load balancer (orange dashed-dotted line). We vary the num-
ber of CPU cores used on the NF (x-axis). We replay a CAIDA
trace that runs for 3.7s and contains 13.4 M flows.

RIBOSOME supports the Reframer packet scheduler at
about 150 Gbps with 4 CPU cores and about 220 Gbps with
8 CPU cores (hyperthreading enabled). To put things into per-
spective, this level of throughput is almost 2.2× higher than
the one achieved in the original paper on a single server (i.e.,
100 Gbps) [11]. We observe that a single Queue-Pair has a
throughput limitations of 2.5 Gbps. This means that currently
RIBOSOME, combined with Reframer, can only guarantee
packet ordering for traffic classes whose throughput is at most
2.5 Gbps. We expect such limitations to ease in future genera-
tions of RDMA.

Similarly, Fig. 8 shows the performance of the per-flow rate
limiter that independently tracks the rate of each individual
micro-flow going through the switch and limits them using a
per-flow token bucket. The rate-limiter NF achieves close to
300 Gbps similarly to the load balancer function. Both these
NFs require keeping track of individual Layer-4 connections.
In both cases, the NF server handles 3 M new flows per second,
whereas an ASIC switch can only support ~100 K flow-table
entry modifications [46].
RIBOSOME preserves the order of packets. As discussed in
Sect. 4, there is a possibility that packets from different Queue-
Pairs got interleaved during RDMA Reads. We investigate
the amount of unordered packets by measuring the average
Spatial Locality Factor (SLF) of the traffic on the RIBOSOME
output and comparing it with the SLF value right after Re-
framer instances on the NF. It is the parameter used in [11] to
measure the ordering level of the traffic. We observe that using

2 4 6 8 10 12 14 16
CPU cores on the NF

0.00

100.00

200.00

300.00

Ou
tp

ut
 th

ro
ug

hp
ut

 (G
bp

s)

Advanced scheduler
Per-flow rate limiter
Load-Balancer

Figure 8: Throughput of three advanced Network Functions.

our trace file, the SLF value on the NF server is 1.31 while
it only drops slightly to 1.29 on the output of RIBOSOME,
which demonstrates its ability to primarily preserve the order
of packets according to the advanced scheduler.

6.3 RDMA Interference Analysis

Storing payloads on RDMA servers may impact applications
running on those servers, and specifically, their available net-
work and memory bandwidth.

Little impact of RDMA on memory bandwidth and CPU.
We generate RDMA operations that fill the NIC capacity
(nearly 100 Gbps) and verify that the CPU load is 0% as
RDMA traffic bypasses the CPU. We then use STREAM [30]
to benchmark the CPU-to-memory bandwidth. We see that
the available CPU-to-memory bandwidth decreases by ~25%
when using 100% of the NIC for RDMA operations. De-
spite such bandwidth decrease, RIBOSOME leaves plenty of
memory spare bandwidth on the RDMA servers.

RIBOSOME reactively releases network bandwidth re-
sources from RDMA servers. We craft a synthetic trace
where RIBOSOME does not split a specific traffic class and
forwards it directly to the RDMA Server 1. This “unsplit”
traffic gradually increases over time simulating an increased
bandwidth demand on Server 1. We run this experiment with-
out 3× multicasting enabled and we set the back-off RDMA
threshold at 40 Gbps. Fig. 9 shows the input throughput of
the “unsplit” traffic (violet line) and that of the four RDMA
servers. We see that the RDMA throughput on each RDMA
servers is around 7 Gbps at time 15s. When the “unsplit” traf-
fic reaches roughly 33Gbps (at time 16s), this event triggers
RIBOSOME’s control mechanism, which stops sending pay-
loads to Server 1 and redistributes the load on the other three
servers. In future work, we will design an adaptive algorithm
(instead of an on/off control mechanism) to share the NIC
bandwidth in a fine-grained manner. This will also decrease
the CPU memory controller utilization of RIBOSOME when
the server is used for a network workload.

Figure 9: RIBOSOME stops sending payloads to Server 1
when it becomes overloaded.

6.4 ASIC Resource Usage

Table 3 shows the additional ASIC resources consumed by
RIBOSOME based on the Tofino compiler’s output. Overall,
RIBOSOME consumes a similar amount of VLIW Instructions
and Match Crossbar than TEA [21] and occupies a negligible
amount of TCAM. For SRAM memory usage, we allocate
1.5K×15×4B register entries to store headers while fetching
the payloads with RDMA, which suffice to sustain the 4µs
RDMA maximum response time. Moreover, RIBOSOME also
relies on several registers to store RDMA connections data,
which justifies the additional memory usage.

Resource Additional Usage
SRAM 7.84%
TCAM 1.14%

VLIW Instruction 13.82%
Exact Match Crossbar 13.92%

Ternary Match Crossbar 0.69%

Table 3: Additional ASIC resources used by RIBOSOME.

7 Discussion
How many NF-dedicated ports to achieve full-throughput
on a high-speed ASIC switch? Similarly to Tiara,
RIBOSOME only achieves half of the switch throughput as
half of the ports store payloads. One RIBOSOME server pro-
cesses up to 80 Mpps for a forwarding NF. We need to use
three ports of the switch exclusively for NF processing to
process the equivalent of 1.6 Tbps of 1 KB packets. With ad-
vanced NFs, we must reserve 6-7 ports on the switch whereas
Tiara requires 8 ports to connect its FPGAs. Replacing our
NF servers with FPGAs may lower the number of dedicated
ports to our lower bound of 3 ports, which is future work.
Can RIBOSOME offload heavy-hitter entries to the switch
after an insertion? Yes, this is doable (whenever the NF
function is realizable on a programmable switch) and similar
to what TEA or CRAB [22] do. We believe this optimization
is orthogonal to our approach and we leave it as future work.

8 Related Work
We discuss related work that we have not already mentioned.
Dedicated external devices. Several systems require send-
ing the entire packet to the NF processor [8, 15, 20, 26, 34–
36, 46, 49]. Gallium [48] enables offloading a part of the NF
processing on the switch, but complex processing still needs
to be executed on the NFs servers. In contrast, we minimize
the amount of dedicated resources needed to run complex
NFs by relying on shared resources to store and retrieve pay-
loads, thus minimizing the number of ports on the switch
connected to dedicated devices. Moreover, we present a novel
programmable buffer that supports packet schedulers or batch-
based NFs.
RDMA on a high-speed ASIC switch. TEA [21],
SwitchML [38], and Dart [24] all propose to use RDMA
directly on the Intel Tofino switch. TEA (SwitchML) im-
plements reliable (unreliable) RDMA transport. TEA code
is not publicly available. Unreliable RDMA does not sup-
port RDMA Reads. Dart sketches an implementation without
providing code. We implement reliable RDMA, evaluate bot-
tlenecks, and make all our code public.

9 Conclusion
We presented RIBOSOME, a high-speed stateful packet pro-
cessor that reduces the amount of dedicated NF processors
by carefully sending only headers to the external NFs. We
showed in our testbed that RIBOSOME scales throughput by
up to a factor of 3× with a single NF processor (potentially
up to 10× with additional RDMA servers for storing pay-
loads). We believe that RIBOSOME aligns with the current
trends towards disaggregating architecture in which resources
are shared for different purposes. We leave as future work the
fundamental problem of further improving the performance
of CPU-based NF processors given the observed high cost
of retrieving the flow state from memory (especially when
it resides outside the cache). Also, we will further investi-
gate optimizations for reducing packet-per-second overheads
introduced when splitting packets.

Acknowledgements
We would like to thank our shepherd Jeongkeun Lee, the
anonymous reviewers for their insightful comments and sug-
gestions on this paper. This work has been partially sup-
ported by the Swedish Research Council (agreement No.
2021-04212) and KTH Digital Futures. This work has re-
ceived funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and in-
novation programme (grant agreement No. 770889). Tom
Barbette has been funded by an FSR Post-doc Fellowship
from UCLouvain.

References

[1] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast
userspace packet processing. In 2015 ACM/IEEE Sym-
posium on Architectures for Networking and Communi-
cations Systems (ANCS), pages 5–16, 2015.

[2] Tom Barbette, Cyril Soldani, and Laurent Mathy. Com-
bined stateful classification and session splicing for high-
speed NFV service chaining. IEEE/ACM Transactions
on Networking, 29(6):2560–2573, 2021.

[3] Tom Barbette, Erfan Wu, Dejan Kostić, Gerald Q.
Maguire, Panagiotis Papadimitratos, and Marco
Chiesa. Cheetah: A High-Speed Programmable
Load-Balancer Framework With Guaranteed Per-
Connection-Consistency. IEEE/ACM Transactions on
Networking, pages 1–14, 2021.

[4] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding Metamorphosis:
Fast Programmable Match-Action Processing in Hard-
ware for SDN. SIGCOMM Comput. Commun. Rev.,
43(4):99–110, aug 2013.

[5] Broadcom. Tomahawk4, 2022. https:
//www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56990-
series.

[6] CAIDA . Trace Statistics for CAIDA Passive OC48
and OC192 Traces, 2019. https://www.caida.org/
catalog/datasets/trace_stats/.

[7] Don Draper. TSMC’s 5nm 0.021um2 SRAM
Cell Using EUV and High Mobility Channel
with Write Assist at ISSCC2020, 2020. https:
//semiwiki.com/semiconductor-manufacturers/
tsmc/283487-tsmcs-5nm-0-021um2-sram-cell-
using-euv-and-high-mobility-channel-with-
write-assist-at-isscc2020/.

[8] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and
Implementation, NSDI’16, page 523–535, USA, 2016.
USENIX Association.

[9] Facebook. Katran Load Balancer, 2021. https:
//github.com/facebookincubator/katran/blob/
3fadb1eaaff719980a3cc9dc8870f88d442a40e1/
katran/lib/bpf/balancer_consts.h#L100.

[10] Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q.
Maguire Jr., and Dejan Kostić. PacketMill: Toward per-
Core 100-Gbps Networking. In Proceedings of the 26th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS 2021, page 1–17, New York, NY, USA, 2021.
Association for Computing Machinery.

[11] Hamid Ghasemirahni, Tom Barbette, Georgios P. Kat-
sikas, Alireza Farshin, Amir Roozbeh, Massimo Girondi,
Marco Chiesa, Gerald Maguire, and Dejan Kostic.
Packet Order Matters! Improving Application Perfor-
mance by Deliberately Delaying Packets. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), 2021.

[12] Massimo Girondi, Marco Chiesa, and Tom Barbette.
High-speed Connection Tracking in Modern Servers.
In 22nd IEEE International Conference on High Per-
formance Switching and Routing, HPSR 2021, Paris,
France, June 7-10, 2021, pages 1–8. IEEE, 2021.

[13] Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan
Beschastnikh, and Margo Seltzer. Parking Packet Pay-
load with P4, page 274–281. Association for Computing
Machinery, New York, NY, USA, 2020.

[14] Vladimir Gurevich and Andy Fingerhut. P4_16
Programming for Intel Tofino using Intel P4
Studio, 2021. https://opennetworking.org/
wp-content/uploads/2021/05/2021-P4-WS-
Vladimir-Gurevich-Slides.pdf.

[15] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue
Moon. PacketShader: A GPU-Accelerated Software
Router. In Proceedings of the ACM SIGCOMM 2010
Conference, SIGCOMM ’10, page 195–206, New York,
NY, USA, 2010. Association for Computing Machinery.

[16] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio
Drago, Ramin Sadre, Anna Sperotto, and Aiko Pras.
Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix. IEEE Communications
Surveys Tutorials, 16(4):2037–2064, 2014.

[17] InfiniBand Trade Association. Supplement to Infini-
Band Architecture Specification - Annex A17: RoCEv2,
2014. https://cw.infinibandta.org/document/
dl/7781.

[18] Intel. Intel Tofino 3 Intelligent Fabric Processor
Brief, 2022. https://www.intel.com/content/
www/us/en/products/network-io/programmable-
ethernet-switch/tofino-3-brief.html.

[19] Intel. Intel Tofino Series, 2022. https:
//www.intel.com/content/www/us/en/products/

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.caida.org/catalog/datasets/trace_stats/
https://www.caida.org/catalog/datasets/trace_stats/
https://semiwiki.com/semiconductor-manufacturers/tsmc/283487-tsmcs-5nm-0-021um2-sram-cell-using-euv-and-high-mobility-channel-with-write-assist-at-isscc2020/
https://semiwiki.com/semiconductor-manufacturers/tsmc/283487-tsmcs-5nm-0-021um2-sram-cell-using-euv-and-high-mobility-channel-with-write-assist-at-isscc2020/
https://semiwiki.com/semiconductor-manufacturers/tsmc/283487-tsmcs-5nm-0-021um2-sram-cell-using-euv-and-high-mobility-channel-with-write-assist-at-isscc2020/
https://semiwiki.com/semiconductor-manufacturers/tsmc/283487-tsmcs-5nm-0-021um2-sram-cell-using-euv-and-high-mobility-channel-with-write-assist-at-isscc2020/
https://semiwiki.com/semiconductor-manufacturers/tsmc/283487-tsmcs-5nm-0-021um2-sram-cell-using-euv-and-high-mobility-channel-with-write-assist-at-isscc2020/
https://github.com/facebookincubator/katran/blob/3fadb1eaaff719980a3cc9dc8870f88d442a40e1/katran/lib/bpf/balancer_consts.h#L100
https://github.com/facebookincubator/katran/blob/3fadb1eaaff719980a3cc9dc8870f88d442a40e1/katran/lib/bpf/balancer_consts.h#L100
https://github.com/facebookincubator/katran/blob/3fadb1eaaff719980a3cc9dc8870f88d442a40e1/katran/lib/bpf/balancer_consts.h#L100
https://github.com/facebookincubator/katran/blob/3fadb1eaaff719980a3cc9dc8870f88d442a40e1/katran/lib/bpf/balancer_consts.h#L100
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://cw.infinibandta.org/document/dl/7781
https://cw.infinibandta.org/document/dl/7781
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html

network-io/programmable-ethernet-switch/
tofino-series.html.

[20] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Re-
becca Steinert, and Gerald Q. Maguire Jr. Metron: NFV
Service Chains at the True Speed of the Underlying
Hardware. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
171–186, Renton, WA, April 2018. USENIX Associa-
tion.

[21] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Se-
shan. TEA: Enabling State-Intensive Network Functions
on Programmable Switches. In Proceedings of the An-
nual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’20, page 90–106, New York, NY,
USA, 2020. Association for Computing Machinery.

[22] Marios Kogias, Rishabh Iyer, and Edouard Bugnion. By-
passing the Load Balancer without Regrets. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing,
SoCC ’20, page 193–207, New York, NY, USA, 2020.
Association for Computing Machinery.

[23] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal,
Neha Agarwal, Radoslaw Burny, Shakeel Butt, Jichuan
Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and
Parthasarathy Ranganathan. Software-defined far mem-
ory in warehouse-scale computers. In International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2019.

[24] Jonatan Langlet, Ran Ben-Basat, Sivaramakrishnan Ra-
manathan, Gabriele Oliaro, Michael Mitzenmacher, Min-
lan Yu, and Gianni Antichi. Zero-CPU Collection with
Direct Telemetry Access, page 108–115. Association for
Computing Machinery, New York, NY, USA, 2021.

[25] Tamás Lévai, Felicián Németh, Barath Raghavan, and
Gabor Retvari. Batchy: Batch-scheduling Data Flow
Graphs with Service-level Objectives. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 633–649, Santa Clara, CA,
February 2020. USENIX Association.

[26] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng,
Renqian Luo, Ningyi Xu, Yongqiang Xiong, Peng
Cheng, and Enhong Chen. ClickNP: Highly Flexible
and High Performance Network Processing with Recon-
figurable Hardware. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 1–14,
New York, NY, USA, 2016. Association for Computing
Machinery.

[27] Linux. perftest, 2022. https://github.com/linux-
rdma/perftest.

[28] Linux. RDMA Core, 2022. https://github.com/
linux-rdma/rdma-core.

[29] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis,
Jeongkeun Lee, Changhoon Kim, Xin Jin, Vladimir
Braverman, Minlan Yu, and Vyas Sekar. Jaqen: A
High-Performance Switch-Native approach for detect-
ing and mitigating volumetric DDoS attacks with pro-
grammable switches. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 3829–3846. USENIX
Association, August 2021.

[30] John D McCalpin et al. Memory bandwidth and ma-
chine balance in current high performance computers.
IEEE computer society technical committee on computer
architecture (TCCA) newsletter, 2(19-25), 1995.

[31] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: Making Stateful Layer-4
Load Balancing Fast and Cheap Using Switching ASICs.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’17, page 15–28, New York, NY, USA, 2017. Association
for Computing Machinery.

[32] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels
Bouten, Filip De Turck, and Raouf Boutaba. Network
Function Virtualization: State-of-the-Art and Research
Challenges. IEEE Communications Surveys Tutorials,
18(1):236–262, 2016.

[33] NVIDIA Networking. NVIDIA Mellanox ConnectX-
5 adapters, 2021. https://www.nvidia.com/en-us/
networking/ethernet/connectx-5/.

[34] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A. Maltz, Randy Kern,
Hemant Kumar, Marios Zikos, Hongyu Wu, Changhoon
Kim, and Naveen Karri. Ananta: Cloud Scale Load
Balancing. SIGCOMM Comput. Commun. Rev.,
43(4):207–218, aug 2013.

[35] Boris Pismenny, Liran Liss, Adam Morrison, and Dan
Tsafrir. The Benefits of General-Purpose On-NIC Mem-
ory. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’22), pages
1–18. Association for Computing Machinery, New York,
NY, USA, February 2022.

[36] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi, Da-
vide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, Felipe Huici, and Giuseppe Siracusano.

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/

FlowBlaze: Stateful Packet Processing in Hardware. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 531–548, Boston,
MA, February 2019. USENIX Association.

[37] Waleed Reda, Marco Canini, Dejan Kostić, and Simon
Peter. RDMA is Turing complete, we just did not know it
yet! In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), Renton, WA,
April 2022. USENIX Association.

[38] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with In-
Network aggregation. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 785–808. USENIX Association, April 2021.

[39] Mariano Scazzariello, Tommaso Caiazzi, Hamid
Ghasemirahni, Tom Barbette, Dejan Kostic, and Marco
Chiesa. Ribosome Experiments Github Repository,
2022. https://github.com/Ribosome-Packet-
Processor/Ribosome-experiments.

[40] Mariano Scazzariello, Tommaso Caiazzi, Hamid
Ghasemirahni, Tom Barbette, Dejan Kostic, and
Marco Chiesa. Ribosome Github Repository,
2022. https://github.com/Ribosome-Packet-
Processor/Ribosome.

[41] Nicolas Le Scouarnec. Cuckoo++ hash tables: High-
performance hash tables for networking applications. In
Proceedings of the 2018 Symposium on Architectures for
Networking and Communications Systems, pages 41–54,
2018.

[42] Tom Shanley. Infiniband Network Architecture.
Addison-Wesley Longman Publishing Co., Inc., USA,
2002.

[43] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating Fair Queueing
on Reconfigurable Switches. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 18), pages 1–16, Renton, WA, April 2018.
USENIX Association.

[44] John Sonchack, Oliver Michel, Adam J. Aviv, Eric
Keller, and Jonathan M. Smith. Scaling hardware accel-
erated network monitoring to concurrent and dynamic
queries with *Flow. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 823–835, Boston,
MA, July 2018. USENIX Association.

[45] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve

Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation, SIGCOMM ’18, page 561–575, New York, NY,
USA, 2018. Association for Computing Machinery.

[46] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong
Wang, Luyang Li, Wenchen Han, Nan Chen, Lebing
Wan, Lichao Liu, Zhipeng Ding, Xiongfei Geng, Tao
Feng, Feng Ning, Kai Chen, and Chuanxiong Guo. Tiara:
A Scalable and Efficient Hardware Acceleration Ar-
chitecture for Stateful Layer-4 Load Balancing. In
19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22), Renton, WA, apr
2022. USENIX Association.

[47] Lior Zeno, Dan R. K. Ports, Jacob Nelson, Daehyeok
Kim, Shir Landau-Feibish, Idit Keidar, Arik Rinberg,
Alon Rashelbach, Igor De-Paula, and Mark Silberstein.
SwiSh: Distributed shared state abstractions for pro-
grammable switches. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 171–191, Renton, WA, April 2022. USENIX
Association.

[48] Kaiyuan Zhang, Danyang Zhuo, and Arvind Krishna-
murthy. Gallium: Automated software middlebox of-
floading to programmable switches. In Proceedings
of the Annual Conference of the ACM Special Inter-
est Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’20, page 283–295, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

[49] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe,
Vyas Sekar, and Justine Sherry. Achieving 100Gbps In-
trusion Prevention on a Single Server. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 1083–1100. USENIX As-
sociation, November 2020.

A Experimental Setup

Fig. 10 depicts the experimental setup. The Traffic Generator
is connected to the Multicast Tofino with a 100-Gbps link. The
Multicast Tofino has four of its 100-Gbps ports connected
to the RIBOSOME Tofino, and it multiplexes the incoming
traffic from the Generator. It modifies each packet to have two
additional copies with different 4-tuple values before sending
them to the RIBOSOME Tofino. RIBOSOME Tofino is attached
to four commodity servers running the RDMA server, and
one server that implements the NF, all with 100 Gbps links.
When a packet is reconstructed after the NF processing, the
RIBOSOME Tofino sends it back to the Multicast Tofino. If

https://github.com/Ribosome-Packet-Processor/Ribosome-experiments
https://github.com/Ribosome-Packet-Processor/Ribosome-experiments
https://github.com/Ribosome-Packet-Processor/Ribosome
https://github.com/Ribosome-Packet-Processor/Ribosome

the packet is an original one (with no flow modifications), it
is sent back to the Traffic Generator.

B RIBOSOME Tail Latency Impacts

Fig.11 demonstrates the impact of RIBOSOME on packets
99th percentile tail latency when the NF server is running a
simple forwarder.

C Recovering RDMA Queue-Pairs

We illustrate the implementation of the QP Recover mecha-
nism discussed in Sect. 3.

For supporting both RDMA Write and Read operations,
Queue-Pairs are created using the Reliable Connection trans-
port mode. This mode expects that packets are received in
the correct order, by checking their PSN. If a packet is out
of order, the QP sends back a PSN Error Nak, requesting the
retransmission. RIBOSOME’s implementation does not store
RDMA Write or Read Request packets in the switch (it only
keeps the current PSN). Hence, it is not able to retransmit a
Nak-ed packet. Additionally, Infiniband specifications limit
the maximum number of outstanding RDMA Read Requests
on each QP. If there are more of such requests, the QP transits
into an invalid state, sending an Invalid Request Nak.

To overcome these limitations, RIBOSOME exploits several
QPs on each server, and it also implements a QP recovery
mechanism, that allows to reset a QP in case of errors.

When the programmable switch receives a Nak, it puts the
corresponding Queue-Pair qi in a disabled state writing the
enabled_qp register to 0. The index i to access the register is
the DestQP field of the BTH header, that is the value Rqi = i+
(Server_ID∗Nqp). The enabled_qp register is periodically
checked by a control plane script, that takes all the entries
with a value of 0 and, for each index j, reads register qp at
index j. If the Queue-Pair ID is set, the switch writes another
register (called qp_to_restore) at index j with a value 1.

Traffic
Generator

RDMA
Server 1

RDMA
Server 2

RDMA
Server 3

RDMA
Server 4

Multicast Tofino

Ribosome Tofino NF

Figure 10: RIBOSOME testbed.

When receiving a packet in the Splitter component, if
the Queue-Pair qi is selected, and the value of enabled_qp
register at index i is 0, and the value of qp_to_restore
register at index i is 1, the packet is sent to the NF with-
out splitting it. Also, the packet is mirrored to the Egress
pipeline, and transformed into a simple Ethernet frame with
EtherType= 0x4321, containing the index of the Queue-Pair
to restore. The server agent has a raw L2 socket listening on
the interface used to open the connection. When the afore-
mentioned frame is received, the associated QP is reset and
re-initialized. At this point, a Server Queue-Pair Info packet
is sent to the switch, that re-enables the QP.

D Splitter and Rebuilder Components

We illustrate a high level overview of the two main
RIBOSOME’s components. Fig. 12 depicts the Splitter com-
ponent, while Fig. 13 shows the Rebuilder component.

E Custom Ethernet Frames and Headers

RIBOSOME leverages on several custom Ethernet frames to
identify a server connection, depicted in Fig. 14.

Also, the system uses two custom headers (showed in
Fig. 15), that contain information needed to retrieve a payload
and merge it with its correct headers:
a) Payload Info: appended to truncated headers when the

packet is split. The Marker field is used by the switch
to identify the header. The Payload Address indicates
the starting address of the payload in the remote RDMA
buffer. The Length field is the length of the payload in
the buffer. The Index is used by the switch to request the
payload on the same Queue-Pair used when sending the
RDMA Write request.

b) Header Info: appended to the Payload Info when the
packet is split. It is also prepended to the payload before
sending it to the remote buffer. The Pad Count field stores
the number of bytes of the Additional Padding field to
align the payload to a 4-byte boundary as per Infiniband

10 20 30 40 50 60 70 80 90
Input Rate (Gbps)

0.00

100.00

200.00

300.00

400.00

500.00

99
th

 p
er

ce
nt

ile
 la

te
nc

y
(μ

s)

Ribosome
Baseline

Figure 11: RIBOSOME 99th percentile latency of packets
w/wo existence of Ribosome.

Craft RDMA Write

Headers Payload Info Header Info
Mirror and
Truncate

PayloadHeaders
Servers

Remote
Buffer

NF

Data Plane

Per-QP Data: [qp_number, enabled_qp, qp_to_restore, psn]
Per-Server Data: [mac, ip, base_addr, rkey, memory_offset]

Global Data: [header_chunks, current_hdr_index]

RoCEv2 PayloadPadHeader Info

Figure 12: RIBOSOME’s Splitter Component Overview.

Data Plane

RoCEv2
Store

Registers

hdrs_0 hdrs_1 hdrs_n…

Craft RDMA Read Request

Read PayloadHeaders

Merge

Destination

RDMA Read Response

NF

Per-QP Data: [qp_number, enabled_qp, qp_to_restore, psn]
Per-Server Data: [mac, ip, base_addr, rkey, memory_offset]

Global Data: [header_chunks, current_hdr_index]

Headers Payload Info Header Info

RoCEv2 PayloadPadHeader Info

Servers

Remote
Buffer

Figure 13: RIBOSOME’s Rebuilder Component Overview.

specifications [42]. The Header IDX indicates the index
of the register where the header processed by the NF is
saved while the switch is fetching the payload from the
remote buffer.

Code = 1
1 byte

Server ID
2 bytes

Remote Base Address
8 bytes

Remote Key
4 bytes

Ethernet
(Ether Type = 0x1234)

Server Memory Info

Code = 2
1 byte

Server ID
2 bytes

MAC Address
6 bytes

IP Address
4 bytes

Ethernet
(Ether Type = 0x1234)

Server Interface Info

Code = 0
1 byte

Queue Pair ID
4 bytes

Ethernet
(Ether Type = 0x1234)

Server Queue Pair Info

QP Switch Idx

2 bytes

Figure 14: Server Info Ethernet Frames.

Length
2 bytes

Payload Address
8 bytes

ETH Marker
4 bytes

IP
TCP/
UDP

Index
2 bytes

Pad Count
2 bytes

Header IDX
2 bytes

ETH IP UDP IB BTH RETH Padding
2 byte

Header IDX
2 bytes

Additional
Padding

Payload

Payload Info

Pad Count
2 bytes

Header Info

Header Info

Figure 15: RIBOSOME Headers.

F RDMA Latency Microbenchmark

We performed a microbenchmark of RDMA operations using
the Linux Infiniband perftest suite [27] on two servers,
equipped with Intel®Xeon®Gold 6140 CPU @ 2.30GHz,
and Nvidia Mellanox ConnectX-5 NICs. Fig. 16 shows the
average latency of 1 K iterations (y-axis) of both RDMA Read
and Write operations with different payload lengths (x-axis).

Figure 16: RDMA Operations Microbenchmark.

	Introduction
	Motivation
	System Design
	Splitting and Merging Packets
	High-Speed Reliable RDMA

	Supporting Advanced Network Functions
	Implementation
	Evaluation
	Throughput and Latency Gains
	Advanced Network Functions
	RDMA Interference Analysis
	ASIC Resource Usage

	Discussion
	Related Work
	Conclusion
	Experimental Setup
	Ribosome Tail Latency Impacts
	Recovering RDMA Queue-Pairs
	Splitter and Rebuilder Components
	Custom Ethernet Frames and Headers
	RDMA Latency Microbenchmark

