
Rein: Taming Tail Latency in Key-Value
Stores via Multiget Scheduling

Waleed Reda†⇧ Marco Canini? Lalith Suresh‡ Dejan Kostić⇧ Sean Braithwaite§
†Université catholique de Louvain ?KAUST ‡VMware Research

⇧KTH Royal Institute of Technology §SoundCloud

Abstract
We tackle the problem of reducing tail latencies in dis-
tributed key-value stores, such as the popular Cassandra
database. We focus on workloads of multiget requests, which
batch together access to several data elements and parallelize
read operations across the data store machines. We first an-
alyze a production trace of a real system and quantify the
skew due to multiget sizes, key popularity, and other fac-
tors. We then proceed to identify opportunities for reduction
of tail latencies by recognizing the composition of aggre-
gate requests and by carefully scheduling bottleneck opera-
tions that can otherwise create excessive queues. We design
and implement a system called Rein, which reduces latency
via inter-multiget scheduling using low overhead techniques.
We extensively evaluate Rein via experiments in Amazon
Web Services (AWS) and simulations. Our scheduling algo-
rithms reduce the median, 95th, and 99th percentile latencies
by factors of 1.5, 1.5, and 1.9, respectively.

CCS Concepts •General and reference ! Performance;
•Computer systems organization ! Distributed archi-
tectures; • Information systems ! Distributed storage

1. Introduction
Modern cloud services require increasingly stricter service
level objectives for performance. These objectives are often
defined in terms of a percentile of the latency distribution
(such as the 99.9th-ile [24]). Thanks to scale-out designs and
simple APIs, key-value storage systems have emerged as a
fundamental building block for creating services capable of
delivering microseconds of latency and high throughput.

Moreover, for interactive Web services, requests with a
high fan-out that parallelize read operations across many dif-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23 - 26, 2017, Belgrade, Serbia

c� 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064209

ferent machines are becoming a common pattern for reduc-
ing latency [10, 11, 37, 42]. These requests, which batch
together access to several data elements, typically gener-
ate tens to thousands of operations performed at backend
servers, each hosting a partition of a large dataset [46]. This
makes reducing latency at the tail even more imperative be-
cause the larger a fan-out request is, the more likely it is to
be affected by the inherent variability in the latency distribu-
tion, where the 99th-ile latency can be more than an order of
magnitude higher than the median [23, 28].

To support this request pattern, many popular storage sys-
tems, including wide-column stores (e.g., Cassandra [2]) and
document stores (e.g., Elasticsearch [3]), offer a multiget
API. A multiget request allows multiple values at the spec-
ified keys to be retrieved in one request. Batching multiple
read operations together is typically far more efficient than
making several individual single-key requests.

Multiget requests provide opportunities to reduce latency
via scheduling. These requests follow the “all-or-nothing”
principle, where a multiget only finishes once all of its op-
erations are completed and the last operation’s response is
received. In practice, multiget requests in real-world work-
loads present variability in attributes like size, processing
time, and fan-out as well as load imbalances and accessed
keys (§2). Such variability means that the response time of
different requests is likely affected by different bottleneck
operations across different servers. Our insight is that it is
possible to improve latency by scheduling operations while
considering what bottleneck affects the overall request com-
pletion time, and “slacking” non-bottleneck operations for as
long as they cause no extra delay to the request. Slacking cer-
tain operations can allow other operations with tighter bot-
tlenecks to be serviced earlier and thus decrease aggregate
response times as well as latencies at the tail.

Scheduling operations of multiget requests across cluster
nodes of a storage system is challenging. Even when a priori
knowledge of all operations to be scheduled and their service
times is assumed, the problem can be expressed as a con-
current open-shop scheduling problem, which is known to
be NP-complete [40]. Moreover, no single scheduling algo-

rithm provides optimal ordering for reducing aggregate re-
sponse times. For heavy-tailed distributions of request sizes,
policies such as Shortest Job First (SJF) help to reduce aver-
age makespans, but for light-tailed distributions First Come
First Served (FCFS) can become the optimal scheduling
strategy [25]. It has also been proven that there is no non-
learning policy that can optimize scheduling across a wide
variety of workloads [50].

In practice, the problem is even more challenging because
operation completion times are not known in advance due
to several factors, including variable service rates, server
load imbalances, skewed access patterns, etc. In addition,
these operations are meant to have very low latency and are
typically serviced in parallel across a number of different
servers. As such, an efficient scheduling algorithm has to op-
erate on multiple uncoordinated servers with minimal over-
head. Thus, this problem is distinct from scheduling batch
jobs in big data systems (e.g., [53]) in which a centralized
scheduler can make coordinated decisions.

To address these challenges, we introduce Rein (§3), a
multiget scheduler that leverages variability in the struc-
ture of multiget requests to reduce the median as well as
tail latency. We first devise a method for predicting bottle-
neck operations within requests, and, based on these predic-
tions, we employ a combination of two policies to sched-
ule requests in an efficient manner (§3.2). The first pol-
icy – Shortest Bottleneck First (SBF) – prioritizes requests
with smaller bottlenecks, which reduces head-of-line block-
ing and improves average makespans. The second policy –
Slack-Driven Scheduling (SDS) – allows us to use resources
efficiently by delaying non-bottleneck operations without
impacting the overall request completion time. The priorities
computed by the aforementioned policies are assigned at the
client-side and then enforced at the backend nodes responsi-
ble for servicing the requests. We leverage both policies to
schedule requests in a manner that is optimized for both me-
dian and higher percentiles of the latency distribution. We
then provide a blueprint for how to enforce our schedul-
ing order in highly concurrent systems by using a novel
scheduling approach called multi-level queues (§3.3), which
combines the advantages of classic scheduling algorithms
while yielding an efficient implementation. Our technique
achieves a low-overhead implementation by adopting non-
blocking FIFO queues that significantly reduce contention
among threads.

We demonstrate the feasibility and benefits of our ap-
proach by instantiating our prototype implementation (§4)
within Cassandra, a popular distributed database. Through
empirical evaluation (§5.1) and simulations (§5.3) using both
production and synthetic workloads, we show that Rein can
reduce the median latency and 95

th percentile by 1.5 times
and the 99

th percentile latency by 1.9 times compared with
multiget-agnostic, FIFO scheduling. We also compare our
approach with other state-of-the-art techniques and find that

Client

read([A,.B,.C])

A,.E B,.C XD…
read(A)

read([B,.C])

values.of.[A,.B,.C]

mget([A,.B,.C])
library.delivers
[A,.B,.C]

1

2

3

5

4

coordinator

Srv1 Srv2 Srv3 Srv4

(a) Multiget via coordinator.

Client

A,)E B,)C XD…

library)delivers
[A,)B,)C]

mget([A,)B,)C])1

2

3

4

Srv1 Srv2 Srv3 Srv4

(b) Multiget in client library.

Figure 1: Common styles of multiget requests in partitioned
key-value stores.

Rein consistently outperforms the others under varying sys-
tem conditions. We expect that our results will inspire the
design of new multiget-aware scheduling algorithms achiev-
ing even greater improvements. Our Rein implementation is
available as open source.1

2. Multiget Requests
Multiget requests are a common idiom employed in mod-
ern cloud services to use storage systems efficiently. Many
popular systems, including Redis [6], Memcached [4], Cas-
sandra [2], MongoDB [5] and Elasticsearch [3], offer sup-
port for multiget requests. Their usage is simple. Developers
write client-side code that batches access to multiple val-
ues as a single request. For example, mget(A, B, C) re-
quests values of keys A,B,C. Their execution dependes on
the system, as we illustrate in Figure 1. For systems like Cas-
sandra (Figure 1a), the client-side library sends the multiget
request to one node of the cluster (referred to as the coordi-
nator, e.g., Srv4), which is responsible for reading all values
across cluster nodes and combining them into a single re-
sponse to be sent back to the client. In other systems like
Memcached (Figure 1b), the client-side library itself could
obtain the response by parallelizing data fetches across clus-
ter nodes, each of which receives only (batched) read opera-
tions for keys that fall in the data partition it serves.

Regardless of the implementation, as data is typically
partitioned (and replicated) across cluster nodes, the like-
lihood that a multiget request would require fetching val-
ues distributed among nodes increases with cluster size and
request size (i.e., number of requested keys). The resulting
workloads consist of fan-out operations across nodes. More-
over, these workloads are likely to exhibit significant varia-
tions as key-value workloads for cloud applications are often
skewed [13, 21], multiget requests vary in size and process-
ing time [37], and individual servers are exposed to perfor-
mance variability (e.g., due to resource contention) [23, 44].

2.1 Benefits of Multiget Scheduling
Variations in the structure of multiget requests give rise to
possible performance improvements through inter-multiget

1 Code at https://github.com/wreda/cassandra-rein.

Srv1

Srv2

Srv3

A

B C

D

E

Both R1 and R2 end

Time R2 R1

(a) Multiget-oblivious schedule.

Srv1

Srv2

Srv3

E

B C

D

A

R1 end R2 end

Time R2 R1

(b) Multiget-aware schedule.

Figure 2: Performance of requests using a multiget-oblivious
(a) and a multiget-aware (b) schedule. Multiget-aware schedul-
ing reduces average response time.

scheduling. We illustrate these with a simple example. Con-
sider again the system in Figure 1. Assume that two multiget
requests, R1 and R2, arrive at the same time: one request
is for three keys, A,B,C and the second is for two keys,
D,E. Given how the data are partitioned, request R1 is bro-
ken down into two sets of operations (called opsets) to read
the values of A and B,C from servers Srv1 and Srv2, re-
spectively.

What will the response times of these requests be? For
presentation sake, assume that every server serves each op-
eration with a service rate, µ, of one operation per unit of
time (e.g., 1 op/ms). This means that serving the B,C opset
will last two units of time (we omit network latencies for
now). We call the opset with the longest response time the
bottleneck opset (which is B,C in this example). A multiget
response time depends on its bottleneck’s completion time.
Thus, assuming no queuing, R1 will complete in two units
of time whereas R2 will complete in one unit of time thanks
to parallelization across two servers. However, when R1 and
R2 execute concurrently, operations might happen in the or-
der A, E. With this schedule, both requests complete in two
units of time as shown in Figure 2a. This is because servers
are oblivious to the structure of multiget requests.

Would processing requests in a multiget-aware fashion
lead to benefits? Because a multiget request is complete
only once all its operations complete, there is some slack
for accessing A — in particular, to cause no extra delay
to R1, the access to A can be postponed for as long as it
completes with a delay of up to two units of time. Given this
information about the global deadline of a multiget request,
a server could serve operations to meet their deadlines while
minimizing the delay of other operations. In our example,
server Srv1 can perform the read operation for E before the
one for A. With this optimal schedule, the completion time
of R2 is just one unit of time and the average response time
minimized to 1.5 as shown in Figure 2b.

Underpinning these performance improvements are the
variations in multigets’ attributes like size, processing time,
and fan-out as well as the load imbalances across cluster
nodes and other common skews of key-value store work-

loads, such as heavy-tailed key access frequency. In prin-
ciple, the higher the variance of these factors, the greater
the opportunity for slack-driven latency reductions, in par-
ticular at the tail of the latency distribution. Using a trace
from a production cluster at SoundCloud, we next highlight
the variations in request sizes and workloads and then quan-
tify the performance improvements that these variations may
yield in practice.

2.2 Analysis of Multiget in Production
We focus on understanding the characteristics of multiget
requests by analyzing a 30-minute trace from a production
cluster at SoundCloud gathered during its operation. We
highlight that the structure of multiget requests exhibits sig-
nificant variations in size and key popularity. While this sin-
gle workload does not generalize to all systems and envi-
ronments, we note that similar properties were observed in
other environments [10, 11, 31, 37, 42]. These insights mo-
tivate and inform Rein’s design.

Figure 3a plots the distribution of multiget request sizes.
The request sizes show a heavy-tailed distribution: ⇠40% of
requests involve more than a single key; the average size is
8.6 keys and the maximum is as high as ⇠2000 keys.

Figure 3b plots the distribution of key access frequency.
This distribution is also heavy-tailed. Most keys are accessed
just once in the collected trace, whereas a few keys are
accessed up to 1000 times.

The values being accessed in this trace are of fixed size.
This allows us to validate that there exists a positive correla-
tion between a multiget size and its response time. However,
as we were limited in the intrusiveness of our instrumen-
tation, we are not able to report on the variation in perfor-
mance from the production cluster. To quantify the variation
in performance across multiget requests and to provide fig-
ures in the context of the results of this paper, we use the
trace to benchmark our Cassandra testbed composed of 16
AWS EC2 m3.xlarge nodes (our setup is detailed §5). We
generate our workload at 75% utilization of the system ca-
pacity and measure the response time of multiget requests.
Figure 4 shows the distribution of response times. We also
analyze and plot the average multiget size of requests binned
by their response times across 10 percentile intervals of the
response time distribution. We observe that there exists a
positive correlation between the response time of a multiget
and its corresponding size (the Pearson’s correlation coeffi-
cient is 0.403). In other words, the larger the multiget size,
the more likely it will incur a higher response time.

The main takeaway from our analysis is that multiget
requests vary widely in size, key access pattern, and re-
sponse time. Combined these variations manifest as uneven
load on the serving nodes. These variations bring several
challenges to achieve performance predictability but at the
same time they create opportunities for performance im-
provements through scheduling read operations, as we dis-
cuss next.

0.00

0.25

0.50

0.75

1.00

100 101 103

Fr
ac

tio
n

of
 re

qu
es

ts

102

Request size

(a) Distribution of request sizes.

0.00

0.25

0.50

0.75

1.00

100 101 102 103 104

Access popularity
Fr

ac
tio

n
of

 k
ey

s

(b) Distribution of key popularity.

Figure 3: Multiget requests from a production trace exhibit
significant variations in size (a) and key popularity (b).

10
20

30
Av

g.
 re

q.
 s

ize

1 10 100 200

0
0.

5
1

Response time (ms)

Fr
ac

tio
n

of
 re

q.
s

Figure 4: The distribution of multiget response times (bottom).
The average multiget size of the requests binned by response
time for each of the 10 percentile intervals of the response time
distribution (top).

2.3 Quantifying Latency Reduction Opportunities
We illustrate the potential benefits of inter-multiget schedul-
ing by analyzing our production traces to quantify latency re-
ductions at different percentiles. This analysis focuses on up-
per and lower bounds estimated on a simplified model of the
system (detailed in §5.3), though our evaluations are based
on production and synthetic workloads on a real system pro-
totype. We present simple estimates for this analysis because
the problem of choosing the optimal request allocation can
be shown to converge into a more complex version of the
online knapsack problem, which is a difficult problem [16].

Recall that we denote by slack the possible delay of
an operation without affecting the completion time of its
containing request. As an upper bound, we assume that every
operation that can be slacked could ideally produce a latency
reduction equal to the slack for that operation. We compute
it by subtracting the response time of an operation from the
response time of its request. To estimate a lower bound, our
model assumes that every server has a queue of operations
where operations are enqueued if the server is not idle. We

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●
●

●

10 30 50 70 90

0
20

40
60

80
10

0

System utilization (%)

%
 L

at
en

cy
 re

du
ct

io
n

Upper bound (slack)
Lower bound (Min. reduction)

Figure 5: Upper and lower bounds for latency reductions at
different system utilization levels.

then consider every operation, x, that can be slacked and
check whether the server processing that operation could
have processed the subsequent operation, y, in its operation
queue such that the service time of y is no larger than the
slack time of x. If that is the case, we measure the resulting
latency reduction if it is greater than zero.

Figure 5 plots the range of average per-operation latency
reduction (area between upper and lower bounds) for in-
creasing system utilizations. It can be seen that latency re-
duction opportunities increase with utilization levels and that
at 90% utilization is roughly double that at 10% utilization.

In summary, these results demonstrate that there exist
potentially good opportunities to reduce request latencies via
slacking operations.

3. Rein Scheduling
Rein aims to reduce latency of key-value stores via inter-
multiget scheduling by exploiting variations in the attributes
of multigets, such as size, processing time, and fan-out.
Specifically, the scheduler’s goals are as follows:
• Achieve best-effort minimization of median multiget re-
sponse times.
• Provide a more predictable performance by reducing high-
percentile latencies.

Our objective is not to determine an optimal schedule,
given the hardness of the underlying scheduling problem.
Rather, we seek to design heuristics that can improve re-
sponse times under realistic settings. For this reason, we re-
solve to employ a novel heuristic solution that fits within
the desired constraints that we fix in the design space as we
elaborate below.

The design space of solutions for minimizing latency of
storage systems is large, even if only scheduling-based so-
lutions are considered. We make the following decisions to
guide us towards a practical solution:
• The scheduler should operate online, with minimal over-
head, and assuming no prior knowledge of requests.

• There should be no coordination between clients and
servers, nor centralized components; rather, clients may only
pass information to servers in the form of meta-data assigned
to individual operations.

3.1 Solution Overview
We address the design goals via two main components: (i)
server-side, multiget-aware scheduling based on (ii) client-
side priority assignment. Figure 6 visualizes the architecture
used in our approach.

As seen in the figure, the process begins when a multiget
request is issued at the requester endpoint. According to
what we illustrated in Figure 1, this endpoint is either the
client that issues the request via the client-side library or the
coordinator node that is tasked with processing the request
submitted by a client of the cluster.

The multiget request is first subdivided into a collection
of opsets, wherein each opset comprises of all operations for
each distinct data partition. Thus, operations are split accord-
ing to the same strategy used for selecting servers to serve
operations (typically some form of hashing). Empty opsets
are pruned out. Note that, in replicated storage systems, this
split maps to the number of replica groups; that is, it maps to
the set of servers responsible for a data partition.

Next, the requester endpoint assigns each opset with a
certain priority using a priority assignment strategy (detailed
later). This priority is then inserted as meta-data in every
operation of a given opset; all operations of an opset share
the same priority.

The scheduling of operations does not occur until they
are processed on the server side. After priority assignment,
each operation is sent to a server responsible for the correct
data partition. At a high level, the server then serves requests
according to their assigned priority, reaping the benefits of
scheduling operations in a multiget-aware fashion. However,
to perform this scheduling efficiently in practice, our design
makes use of a multiple queues. As we discuss below, this
design approximates the desired highest-priority-first order
while preventing starvation and enabling an implementation
based on non-blocking FIFO queues.

While this design appears conceptually simple, the devil
is in the detail. The difficulty stems from the fact that, by
design, each client (or coordinator) in our solution needs to
make independent decisions based on only the structure of
each mutiget request. Thus, there are two major challenges
that we need to solve: (i) what strategy to use for priority
assignment? and (ii) how do we efficiently perform the
operation scheduling?

3.2 Design Details
We now discuss the components of our solution that address
these challenges.

3.2.1 Multiget-Aware Scheduling
Multiget-aware scheduling exploits the fact that a multiget’s
response time depends on the slowest of its operations to
complete (i.e., the bottleneck operation). Our first approach
was to consider having a simple priority queue on the server
side and assigning priorities on the client side. Priorities are
assigned based on a notion of the cost of an operation. The
cost aims to reflect the amount of work necessary to process
an operation. The cost of an opset refers to the sum of the
costs of all its operations. The cost is also used to estimate
the bottleneck of a request, as we explain below.
Bottleneck estimation. Estimating the bottleneck of a re-
quest (that is, the response time of the last operation) is
a difficult problem because this time can be influenced
by many factors, including server performance fluctuations
(e.g., garbage collection, performance interference, or other
background activities), resource contention, skewed access
patterns, and caching. Knowing the requested value size is
therefore not necessarily a good predictor of the response
time. In queuing theory, our system can be modeled by a
fork-join queue, which factors in the splitting (or forking) of
requests amongst K servers and and then being joined into
a single response after all operations return. The problem
with these models, however, is that they fail to provide exact
solutions for more than 2 servers [26]. As such, due to the
difficulties of exact-analyses in these models, most studies
focus on approximation techniques [45]. To make matters
worse, based on our consultations with queuing theory ex-
perts, it is challenging for this model to accurately account
for the complexities of our system given the multi-threaded
nature of server nodes and the fact that multigets do not have
a constant K and their opset sizes vary.

One might consider tracking several run-time metrics,
such as the distribution of response times, the likelihood of
finding a key in cache, etc., and performing an estimation us-
ing these data. We found that making an accurate estimation
based on the distribution of previous response times resulted
in sub-optimal scheduling decisions due to staleness of the
information. In addition, given the need for sub-millisecond
decision making, performing these predictions in an online
fashion can be challenging. Relying on a simple heuristic
can therefore be advantageous.

We choose a simple method that we found to yield rea-
sonably good results in practice. For a given request, we as-
sume that the bottleneck opset is the opset with the highest
number of operations in it. Multiple opsets can be treated as
the bottleneck if they are the same size. In other words, the
cost scales linearly with the opset size, which follows what
has been observed for the sizes of I/O queries in distributed
execution environments [8, 12, 53]. Implicitly, we assume
that all operations experience the same response time, which
is of course not true in practice. Based on our experiments,
we find that there is a weak correlation between the size of
the data being requested and the service time if all data is

mget request
()

Client or Coordinator endpoint Server endpoint

opset
split

= 1001…

= 0111…

pr
io

rit
y

as
si

gn
m

en
t

Srv1

opset Srv1

opset Srv2

opset Srv3

se
rv

er

se
le

ct
io

n

Q1

Qk

…
 priority

demux
DRR

scheduling
Srv1

Srv2 (elided)

Srv3 (elided)

Q1

Q2

() is an ongoing mget request at Srv1

Figure 6: Overview of Rein scheduling for a multiget request arriving at the system. On the requester endpoint, the request (⌅⌅⌅⌅)
is split into multiple opsets, each grouping the operations towards the same data partition. Priority assignment accounts for the cost of
each opset and marks each operation with corresponding priority as meta-data. For example, operations ⌅⌅ are assigned the highest
priority (level 1) as they are estimated to be the bottleneck and sent to Srv1. On the server endpoint, each operation is enqueued
into a queue based on its priority. Multiple queues are serviced using Deficit Round Robin (DRR), which efficiently approximates
processing operations in highest-priority-first order.

stored in memory. However, this does not hold true if the
data is only partially cached. Our evaluation for instance
presents the impact that caching can have on our perfor-
mance improvement. It is part of our on-going work to de-
termine computationally cheap and effective bottleneck esti-
mation techniques.
Initial scheduling algorithms. Based on this understanding
of the problem, we started to investigate classic scheduling
algorithms by considering the following insights:
• Prioritizing operations with shorter execution times can
reduce head-of-line blocking and improve latencies.
• Deprioritizing operations that can be slacked can allow
bottleneck operations to be processed earlier, which results
in lower aggregate response times.

Using these two insights, we considered two natural
scheduling schemes: Shortest Bottleneck First (SBF) and
Slack-Driven Scheduling (SDS).

Shortest Bottleneck First assigns to every operation of
a multiget request a priority that corresponds to the cost of
the bottleneck opset of that multiget request. The intuition is
that requests with shorter bottlenecks should be given prece-
dence to minimize the average request makespan and reduce
head-of-line blocking. This strategy is similar to Shortest
Job First (SJF) scheduling as well as Shortest Remaining
Processing Time (SRPT); however, in our case, given that
request completion times are determined by the last opera-
tion to finish, we use the cost of the bottleneck opset instead
of the cost of individual operations. SBF favors smaller re-
quests by scheduling them ahead of larger multigets, penal-
izing them in the process. For workloads with heavy-tailed
multiget sizes, which we use throughout the paper, we find
that this strategy can be used to reduce both the median as
well as higher percentile latencies (e.g., 95th and 99

th). Like
SJF, SBF and SRPT can be prone to starvation under certain
workload distributions [14, 15]. To counter this, we also in-
corporate a technique to boost priority of an operation after
a certain duration has passed since the operation entered the
servicing server’s queue.

Slack-Driven Scheduling assigns the priority for every
operation x of a non-bottleneck opset, O, as the cost of x
plus the slack of x divided by the number of operations in O,
that is, (cost(x) + slack(x))/size(O). A lower value cor-
responds to a higher priority. This deprioritizes operations
based on how long they are allowed to be slacked without
becoming the bottleneck themselves. In doing so, this pol-
icy aims to use server capacity more wisely by prioritizing
servicing opsets in proportion to how they are bottlenecking
their multiget request. As opposed to SBF, SDS does not pe-
nalize one request in favor of another. This is because the
operations that are delayed are chosen such that they do not
affect the overall response time of their parent multiget re-
quest.

While these approaches gave good results in simulation,
we recognize that, in high-throughput systems (such as key-
value stores), canonical priority queue implementations can
act as significant performance bottlenecks due to lock con-
tention in multi-producer/multi-consumer settings [39]. This
is a well-known problem in the literature; several solutions
have been proposed [9, 51]. We address this problem with a
novel technique, which we term multi-level queues.

3.3 Multi-Level Queues to the Rescue
A way to avoid the inefficiencies of priority queues is to
utilize multiple FIFO queues. This allows us to escape the
lock contention problem since there exist implementations
of lock-free FIFO queues that allow concurrent access with-
out incurring in synchronization overheads.

We now introduce multi-level queues, a way to use K
FIFO queues to approximate a single priority queue by as-
signing to each of the K-th FIFO queue a different dequeue
rate, w

Qi , i 2 [1,K]. In this design, objects with higher pri-
orities are allocated to queues with higher rates (and vice
versa). This provides us with a way to approximate the be-
havior of a single priority queue in a contention-free man-
ner. As a trade-off, we do not have complete control over the

scheduling order. The fact that our bottleneck estimation is
just approximate makes this less of an issue for us.

3.3.1 High-Level Idea
Our aim is to use the multi-level queue data structure to
realize our two scheduling policies — namely, SBF and
SDS. To do so, we need to answer the following questions:
(i) How can operations be assigned to queues in a way that
realizes the aforementioned scheduling policies?
(ii) How do we configure the number of queues and their
respective rates?

We describe some intuitive ways of answering (i) and
then tackle (ii) in the sensitivity analysis later in this section.
To realize SBF and SDS, we want to conceptually map these
policies to multi-level queues while preserving the main
insights that govern the policies.

For SBF, we find we can simply assign all the operations
of a multiget request to a queue based on the request’s cost.
In other words, operations belonging to costlier requests
get assigned to queues with lower rates, while operations
for smaller multigets are assigned to the faster queues. In
doing so, we allow smaller requests to bypass larger multiget
requests and get serviced with higher priority. This allows us
to approximate the SBF schedule.

To realize SDS, we can assign the bottleneck opset to the
fastest queue. The non-bottleneck opsets are then “slacked”
by assigning them to queues with lower rates based on the
ratio of their own cost to that of the bottleneck. In other
words, if an opset cost is half of its bottleneck, then, ideally,
it should be assigned to a queue that is twice as slow. More
generally, however, it should be assigned to the queue that
minimizes the difference between the cost and rate ratios.
We explain this in greater detail below.

Based on this high-level description, we see another op-
portunity for combining both approaches into one scheme.
We achieve this by, first, assigning the bottleneck opset
based on its cost (and not simply to the fastest queue as de-
scribed for SDS). In doing so, we allow opsets with shorter
bottlenecks to finish first, which satisfies the SBF policy.
The non-bottleneck opsets are then assigned to queues with
equal or lower rates according to the aforementioned ratios.
This allows us to attain the benefits of SBF by deprioritiz-
ing requests with longer bottlenecks while at the same time
reducing response time variability between opsets within a
request, thereby realizing SDS and increasing the efficiency
of resource utilization.

3.3.2 Multi-Level Queue Design
Our multi-level queue scheduler (depicted in Figure 7) con-
sists of a set of K queues Q = {Q1, Q2, . . . , QK

}. Each
queue is assigned different dequeue rates, with the highest
assigned w

Q1 and successive queues assigned progressively
lower rates. The scheduler uses Deficit Round Robin (DRR)
to dequeue operations based on the assigned dequeue rates.

Q1

Qk …

Q2

∞

τQ1

R τQ1

wQ1

wQ2

wQk

R τQ1

R2 τQ1

Rk-1 τQ1

Highest priority

Lowest priority

DRR
scheduling

FIFO

FIFO

FIFO

Figure 7: A multi-level queue scheme showing K FIFO queues.
Consecutive queues have incrementally decreasing rates and
exponentially larger bin sizes. Our scheduler uses DRR to de-
queue operations from the queues.

Each queue is assigned an interval of opset costs so that
each opset can be mapped to a queue based on its cost. For
the queue Q

i

, the interval is the pair of thresholds ⌧
Qi , ⌧Qi+1 .

For i = 1, ⌧
Qi = 1, the minimum cost. For i > 1, succes-

sive thresholds are calculated as ⌧
Qi+1 = ⌧

Qi ⇤R where R is
the range factor. In other words, the queue intervals increase
exponentially. We opt to use exponentially ranged thresh-
olds since fine-grained prioritization can result in suboptimal
makespans if the opset completion times are unknown [17].
Despite the fact that we know the size of each opset, our
cost function is merely an estimate and the actual execution
times can differ across servers due to variation of perfor-
mance. Thus, we do not to differentiate between opsets in a
fine-grained manner based on their sizes.
Opset queue assignments. We now detail how we assign
priority to each opset (technically, the operations within it).
Once a multiget request is split into its opsets, we calculate
the cost of the bottleneck opset, B. Opset B is then assigned
to Q

i

such that ⌧
Qi  cost(B) < ⌧

Qi+1 . In other words,
bottlenecks with higher costs are assigned to lower priority
queues, which preserves the SJF properties of SBF. At the
same time, since w

Qi > 0, 8i 2 [1,K], our requests do
not suffer from starvation as they are guaranteed a non-zero
service rate.

We use a different method to assign non-bottlenick opsets
to queues. Algorithm 1 gives the pseudo-code for the proce-
dure. For a non-bottleneck opset, op, we calculate the ratio
between its cost and that of the bottleneck opset. We then
loop over all the queues and choose the queue that mini-
mizes the absolute difference between the cost ratio and cor-
responding dequeue rate ratios. In other words, we try to find

Q
min

= argmin

q2Q

����
cost(op)

cost(B)

�

w
q

w
B

����

where w
B

is the rate of the queue to which B is assigned.

Algorithm 1: Opset queue assignment algorithm.
Data: opsets, queues

1 R = range factor;
// bottleneck opset

2 bn = argmax

op2opsets

cost(op);

3 ⌧
next

= 1;
4 q

bn

= queues[0];
5 for q in queues do

// Find the queue for the bottleneck opset

6 if cost(bn) � ⌧
next

and cost(bn) < ⌧
next

⇤R then
7 q

bn

= q;
8 break;

9 ⌧
next

= ⌧
next

⇤R;
// Assign bottleneck opset to queue

10 tagPriority(B, q
B

);
// Find and assign queues to non-bottleneck opsets

11 for op in opsets do
12 if op == bn then
13 continue;

14 costRatio = cost(op)/cost(bn);
15 q

op

= null;
16 minError = arbitrarily high value (e.g. 109);
17 for q in queues do
18 rateRatio = w

q

/w
qbn ;

19 error = abs(costRatio� rateRatio);
// Find the queue with min. diff between cost

and rate ratios

20 if error < minError and w
qbn � w

q

then
21 minError = error;
22 q

op

= q;

23 tagPriority(op, q
op

);

The intuition behind this is that these opsets are likely to
complete before the bottleneck. As such, we opt to assign
them to a lower priority queue to slack them in a manner
that is proportionate to the ratio between their cost and the
bottleneck’s cost. This assignment captures the properties of
our second priority policy – SDS – which is mainly designed
to synchronize the completion times of the different opsets
(thereby reducing response time variability).
Sensitivity analysis. As with any system with tunable pa-
rameters, a primary concern is to determine the reduction
in performance if these parameters are not configured opti-
mally. To address this concern, we resort to trace-driven sim-
ulations to conduct a sensitivity analysis of our main param-
eters. We used the SoundCloud trace to generate our work-
load and the same settings as in Section 5.3. The primary
goal of this analysis is to assess how changing the number
of queues (K) and the range factor (R) – our two main con-
figurable parameters – can affect the attained latency reduc-

3

4

5

6

7

2 3 4 5 6
Range Factor (R)

N
um

be
r o

f Q
ue

ue
s

(K
)

0

5

10

15

20

25

Performance
degradation (%)

Figure 8: Sensitivity analysis of the range factor (R) and the
number of queues (K), showing that the performance drop is
about 8% in the 1-hop neighborhood of the optimal setting.

tions. In both experiments, we set the initial range to one and
the default values of K and R to four and three respectively.
We observed minimal changes for the median and 95

th per-
centiles, so we exclude their plots for brevity. In Figure 8,
we plot the normalized performance degradation (%) expe-
rienced compared to the optimal settings for different values
of K and R. We see that varying the number of queues can
impact the 99

th percentile latency by up to 25%, whereas
varying the range factor changes it by up to 15%. The biggest
performance drop occurs at the setting with the low num-
ber of queues and smallest range where this can be expected
(the benefits of the multi-level queue are effectively being
removed). More importantly, however, the performance drop
in the 1-hop neighborhood of the optimal setting is a more
manageable 8%. As such, even in unfavorable settings, Rein
is able to realize reasonable performance gains with only mi-
nor hits at the higher percentiles.

Based on these results, it is important to note that, while
having more queues can provide increased control over
scheduling, it can result in queue load imbalances if the
average number of operations entering each queue is not
carefully accounted for. We explored different combinations
of these parameters through simulations and our best per-
forming configuration was K = 4 with queue rates increas-
ing in increments of 1. We also found the optimal value for
both R and r

Q1 to be 1 and 5 respectively. However, we
believe that these parameters are dependent on the workload
and, as such, need to be tuned according to the target work-
load to reach optimal results. We leave developing adaptive
algorithms for tuning these parameters for future work.

4. Implementation
Rein is implemented in Cassandra, a widely used distributed
database offering a key-value interface and multiget opera-
tions. We used version 2.2.4 of Cassandra. For every request

sent to Cassandra, each node in the cluster can act as a co-
ordinator, server or both based on the utilized internal rout-
ing mechanism. Cassandra itself is based on a Staged Event-
Driven Architecture (SEDA) [49]. Each stage performs dif-
ferent functions and has its own thread pool as well as queue
for all the outstanding operations. The stages communicate
among each other via a messaging service.

We considered two different thread pools that are relevant
to Rein’s implementation; these are the native-transport and
the read thread pools. The former is responsible for reading
incoming requests from the TCP socket buffer. The latter
handles the assignment of threads for coordinating the ac-
tual read operation on the target server. Rein’s scheduling
algorithms are implemented in the read thread pool queue.
Note that Rein cannot be implemented in the native-transport
queues as this is where requests are being parsed. As such,
there is no notion of priorities at that stage and the requests
can only be handled in FIFO order.

Rein’s priority assignment takes place at the coordinator.
Since these nodes are responsible for dispatching operations
to the servers handling the operations’ partitions, we can
count the number of operations going to each partition and
assign our priorities accordingly. As per Cassandra’s code
path that handles reads, these operations can either happen
locally (if the data is present on the coordinator node itself)
or are sent to other nodes. If data is replicated, Cassandra
uses a snitch module to load balance the requests across the
different replicas. However, since our priorities are assigned
based on the number of operations headed to a certain par-
tition (i.e., the opset size) and not a replica, our approach
is logically separated from the load-balancing scheme em-
ployed by Cassandra.

5. Evaluation
We evaluate the effectiveness of our approach compared to
a baseline and other latency reduction techniques. We also
leverage simulations for running higher-scale experiments
and to test our system for a wider variety of configurations
and workloads. Our main results are as follows:

(i) We evaluate the performance of Rein in a real system un-
der both realistic and synthetic workloads. We find that
Rein substantially outperforms all other approaches that
we ran against it; e.g., at the 99

th-ile at 75% utilization,
Rein reduces latency of multiget requests by about a fac-
tor of two. Moreover, our results show that request dupli-
cation (both straightforward and speculative) is ineffec-
tive in reducing the tail latency because it simply doubles
the load offered to the system.

(ii) We assess the overheads of using single priority queues
and establish the need to use multi-level queues.

(iii) We test Rein under higher-scales and under a wide variety
of workload conditions and corner cases, observing that

its performance is in several cases close to an idealized
clairvoyant oracle strategy.

5.1 Effectiveness of Rein
We first evaluate Rein in a realistic testbed using produc-
tion workloads. For these experiments, we use 16 m3.xlarge
AWS EC2 instances. To generate our workloads, we used
a modified version of the Yahoo! Cloud Serving Benchmark
(YCSB) [21] – a general-purpose cloud systems benchmark-
ing tool – and configured it to run on a separate node. The
instances each have a total of 15 GB of memory, 2x40 GB
SSD, and 4 vCPUs. We insert data items (also called rows)
into Cassandra with value sizes generated following the dis-
tribution of Facebook’s Memcached deployment [13]. Our
experiments focus on evaluating the effectiveness of Rein at
different operational conditions. In all runs, we set the repli-
cation factor of our partitions to three and the concurrency
level, or how many requests a can node serve simultaneously,
to eight. The consistency level for all requests is set to one.
We also disable the automatic paging feature in Cassandra
to make sure our queries are not sent in a sequential manner.

Realistic workloads. We first evaluate how Rein performs
under different system load levels. We use YCSB to gen-
erate multiget requests based on our trace (described in Sec-
tion 2.2). For this scenario, we first insert a dataset composed
of 100,000 rows, such that the entire dataset can fit into
memory. As such, most of the reads are satisfied through the
operating system’s page cache (since Cassandra delegates
memory management to the operating system). Our first set
of experiments uses 500 closed-loop YCSB threads. We first
test the cluster and find the maximum attainable throughput,
which is ⇠15,000 requests/sec. Note that these are multiget
requests, which fetch 8.6 keys on average. As such, our clus-
ter is actually serving around 129,000 read operations/s for
this workload. We then cap YCSB’s sending rate for differ-
ent experiments to evaluate the performance under different
system utilization levels.

We compare six different latency reduction techniques
against the baseline, which uses Cassandra’s default settings.
Our results are presented in Figure 9.

We evaluate the effectiveness of request duplication,
which involves pre-emptively sending an additional request
for each query. This allows the client to receive the fastest
returning response. Although such a technique has long been
used to reduce latency at the tail, it is not universally appli-
cable across a wide-variety of settings. In fact, in our ex-
periments, once we go higher than 55% system utilization,
the tail latencies are greatly inflated and become twice as
high as the baseline at 75% utilization. This is because send-
ing an extra request essentially doubles the demand on the
servers, which degrades performance if the cluster is already
saturated, confirming the results in [48].

We also evaluate speculative retries, which is another
popular latency-reduction technique that is a more general

●

●

●

●

●

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Throughput (reqs/s)

M
ed

ia
n

La
te

nc
y

(m
s)

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

Request Duplication
Speculative Retries (p90)
Baseline
C3
Rein−SDS
Rein−SBF
Rein

5000 7000 9000 11000

55% load
75% load

(a) Median latency.

●

●

●

●

●

5
10

15
20

25

Throughput (reqs/s)
95

th
 P

er
ce

nt
ile

 L
at

en
cy

 (m
s)

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

Request Duplication
Speculative Retries (p90)
Baseline
C3
Rein−SBF
Rein−SDS
Rein

5000 7000 9000 11000

55% load

75% load

(b) 95th percentile.

●

●

●

●

●

Throughput (reqs/s)

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (m

s)

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Request Duplication
Speculative Retries (p90)
Baseline
C3
Rein−SBF
Rein−SDS
Rein

5000 7000 9000 11000

15
35

55
75

95

55% load
75% load

(c) 99th percentile.

Figure 9: Latency attained by the different variants of Rein compared to other latency reduction techniques. The x-axis represents
the offered load. We see that Rein’s approach achieves the highest gains in the median as well as high percentile latencies.

case of request duplication. In this case, the coordinator trig-
gers another request once a response is delayed past a pre-
defined timeout. We have tested many different timeout val-
ues and found that setting it to the 90

th percentile of the
response time provides the most favorable results. We can
see that, given its less aggressive nature, speculative retries
provides modest benefits at the tail (between 15% and 25%
reduction) but suffers the same problems as request dupli-
cation once our saturation level exceeds the midpoint (al-
beit with lower performance degradation than straightfor-
ward duplication).

In addition to these techniques, we also tested a modified
version of C3 [44] – an optimized dynamic load-balancer –
to see how it fairs against Rein. C3 is composed of a replica
ranking system (which chooses which server should answer
a request) as well as a distributed rate-limiter. We removed
the rate-limiter, as we found that its Akka-based [1] imple-
mentation was causing performance bottlenecks in our ex-
perimental settings. As seen in the results, C3 manages to
provide tangible benefits at the tail (upwards of 25%) while
not suffering any performance problems at the higher utiliza-
tion levels. However, we can also observe that there are little
to no improvements in the median latency, which we believe
is a consequence of the fact that C3 was optimized primarily
for the tail.

Lastly, we experiment with 3 different variations of Rein.
Rein-SDS and Rein-SBF use the pure forms of Slack-Driven
Scheduling and Shortest Bottleneck First, respectively. We
first quantify the gains of each of the policies to discern
whether a combination of both is indeed superior. As we can
see, both approaches provide increasingly higher gains as
we move towards higher utilization levels. This is because
as the load increases, the system experiences higher bursti-
ness, which temporarily causes requests to queue. In turn,
this provides our scheduling heuristics with greater opportu-
nities to re-order the execution of these operations and im-

Figure 10: Time series showing the multiget latencies as well as
the number of outstanding operations during a three-minute
run. We also plot the moving median, 95th, and 99th per-
centiles, which we smoothen using LOESS regression. The me-
dian, 95th, and 99th percentiles are averaging at around 1.9,
14.3, and 19.2 ms respectively. Points exceeding 100 ms latency
are not shown for readability reasons.

prove tail latency. We can see that both variations can pro-
vide upwards of 50% reduction at the 95

th and 99

th per-
centiles at 75% utilization. In addition, Rein-SBF, which is
optimized for reducing average makespans, is able to cause
a sizable reduction in the median latencies, reaching up to
30% at higher load levels. Despite the fact that SBF relies
on prioritizing requests with shorter bottlenecks at the cost
of delaying larger requests, it is still effective at reducing
higher percentile latencies due to the heavy-tailed nature of
our multiget sizes. In essence, delaying very large requests
has no negative impact on the 99

th percentile but can, coun-
terintuitively, even improve it. In summary, both variations
provide much higher gains at different configurations than

Constant & Zipfian Log−normal & Uniform Log−normal & Zipfian

0

2

4

6

8

Baseline Rein Baseline Rein Baseline Rein

La
te

nc
y

(m
s)

(a) Median latency.

Constant & Zipfian Log−normal & Uniform Log−normal & Zipfian

0

20

40

60

Baseline Rein Baseline Rein Baseline Rein

La
te

nc
y

(m
s)

(b) 95th percentile.

Constant & Zipfian Log−normal & Uniform Log−normal & Zipfian

0

50

100

150

200

250

Baseline Rein Baseline Rein Baseline Rein

La
te

nc
y

(m
s)

(c) 99th percentile.

Figure 11: Latency comparison of Rein versus the baseline using different synthetic workloads at 75% utilization.

the other techniques we compare against. We can also see
that Rein is able to outperform the two policies, which shows
that a combination of both policies is in fact better for both
the median and tail latencies.

To investigate the level of burstiness of our workload gen-
eration and to develop a deeper understanding of response
time characteristics, we plot in Figure 10 the time series
of the number of outstanding operations (from the point of
view of YCSB) sampled at 100 ms intervals as well as the
multiget latencies during a three-minute interval of Rein at
steady state. We also plot the moving median, 95th, and 99

th

percentiles for the multiget latencies, which are smoothened
using local regression (LOESS) [20] with a span parameter
of 0.3. We can see that the number of outstanding read op-
erations can vary by as much as 10,000 operations during
the experiment with a standard deviation of 2.38, which is
mostly due to the heavy-tailed nature of multiget sizes in our
workload. We also observe latency spikes, which increase
in frequency and magnitude during periods of higher loads
(e.g., after the 80 s mark). However, despite this, both the
95

th and 99

th percentiles remain relatively stable through-
out the experiment.

Synthetic workloads. We also evaluate Rein against a wide
variety of workloads to assess its generality and to ensure
that our solution is not tailor-fitted to our trace. To formulate
these workloads, we focus on two key features: multiget size
distribution and the access patterns.

For multiget distributions, we want to observe the behav-
ior of Rein against both short- and heavy-tailed workloads.
For the former, we simply use a constant multiget size of 50,
which corresponds to the fan-out factor of requests reported
in Bing’s cluster [10]. We use a constant multiget size to as-
sess the performance of Rein in a challenging scenario in
terms of latency reduction opportunities due to the unifor-
mity of multiget size. Secondly, we generate a heavy-tailed
multiget size distribution by fitting a log-normal curve to
the distribution of multiget sizes reported inside Facebook’s
memcached production clusters [37]. The values of µ and �
of the resulting distribution are set at 2.5 and 1.25, respec-
tively.

For the key popularity distribution, we configure YCSB
to use Zipfian access patterns to emulate skewed reads
(where certain keys are orders of magnitude popular than
others). In addition, we also use uniform access patterns in
which keys are equally likely to be requested in a multiget.

We then combine the above workload characteristics to
generate three distinct workloads.2 The three workloads
have multiget size and access pattern distributions as fol-
lows: Constant & Uniform, Log-normal & Uniform, and
Log-normal & Zipfian. We evaluate Rein performance with
these workloads at a throughput of 900, 1,700, and 1,900
requests/s, respectively. This equates to around 75% system
utilization for each of the specified workloads.

In Figure 11, we can see the performance of Rein com-
pared to the baseline for varying multiget sizes and key ac-
cess patterns. In the scenario with constant multiget size
and Zipfian access pattern, head-of-line blocking is mini-
mized due the uniformity of multiget sizes. As such, Rein
achieves modest performance gains of 6% and 5% at the
95

th and 99

th percentile, respectively. In contrast, having
heavy-tailed, log-normal distributed multiget sizes allows
Rein to attain gains with the SBF aspect of our scheduling
scheme. Since the SBF policy is designed to reduce head-of-
line blocking, it exploits non-uniform request sizes to attain
performance gains. When using a uniform access pattern, we
observe a 35% reduction at the median and up to 30% and
42% at the 95

th and 99

th percentiles, respectively. Finally,
when using a workload with log-normal distributed multiget
sizes and Zipfian access pattern, Rein achieves higher perfor-
mance gains with a 1.6x reduction at the 95th percentile and
a roughly two-fold reduction at both the median and 99

th

percentile latencies.

SSD-heavy reads. In addition to memory-heavy settings,
we evaluate Rein’s performance with SSD-heavy reads in
high-load settings. To do this, we inserted a dataset com-
posed of 300 million rows, such that only approximately
one-third of the data can fit into the operating system’s

2 We omit the workload with constant multiget size and uniform access pat-
terns since it does not offer opportunities for scheduling-based optimiza-
tions.

0

250

500

750

1000

Median 95th 99th

La
te

nc
y

(m
s)

Baseline

Rein

Figure 12: Latency comparison of Rein versus the baseline for
SSD-heavy reads. The dataset size was adjusted such that the
nodes can only cache one-third of the stored rows.

page cache. In this scenario, most of the reads are going
to be performed on the instance’s SSD. As seen in Fig. 12,
Rein improves the 95th and 99th percentiles by up to 35%
and 15%, respectively, with only minor benefits at the me-
dian. These results, while still a significant improvement, are
likely smaller than in the cache-heavy read scenarios, due to
Rein’s inability to predict whether a requested value exists
in-memory or on SSD. Since one-third of the dataset can
exist inside the cache, our ability to predict bottlenecks can
be compromised since our scheduler determines bottleneck
opsets solely based on the number of operations inside them.
We leave how to improve our bottleneck prediction given
the interactions between multiple caching layers for future
work.

5.2 Performance of Single-Priority Queues
Next, we evaluate the performance of different implementa-
tions of priority queues by measuring their throughput under
high-load settings. Namely, we use Java’s Priority Blocking
Queue as well as a concurrent Priority SkipList Queue that is
based on Lotan and Shavit’s design [41]. We compare them
with our multi-level queue (configured with N = 5). In ad-
dition, we also include a comparison to a concurrent FIFO
queue – namely, Java’s Concurrent Linked Queue, which is
based on Michael and Scott’s algorithms [35] – and use it as
a baseline.

We measure the throughput of these data structures (in
a similar manner to [43]) by using 32 threads that either
enqueue or dequeue elements from the target queue with a
50% probability. The priorities of inserted items are integers
chosen uniformly at random between 1 and 5. Each thread
generates a total of 100,000 operations.

We run these experiments on a single machine with 128
GB of RAM and an Intel Xeon E5-2640v3 with 16 physical
cores at 2.60 GHz with hyper-threading enabled. We repeat
each experiment 50 times with different random seeds.

Figure 13 shows the results. Priority Blocking Queue and
Priority SkipList Queue obtain on average around 110,000
and 130,000 ops/s, respectively. On the other hand, Concur-

●●

●●●●●

Priority
Blocking

Priority
SkipList

FIFO
Concurrent Multi−level

100

1000

5000

Th
ro

ug
hp

ut
 (k

 o
ps

/s
)

Figure 13: Throughput benchmark comparing different queue
implementations.

rent Linked Queue achieves much higher throughput as it
does not incur the overheads of maintaining a priority or-
der for its elements. In comparison, multi-level queue pro-
vides much higher throughput, at roughly 2,000,000 ops/s,
which is one order of magnitude higher than the other prior-
ity queue implementations and a five-fold improvement over
the non-blocking FIFO queue.

The reason multi-level queue outperforms traditional pri-
ority queue implementations is that it substantially reduces
lock-contention, thanks to the fact that it does not need to
maintain a fine-grained priority order. Multi-level queue also
has a significant performance advantage over FIFO queue
despite being based on the same data structures and in-
curring the overhead of performing scheduling rounds for
Deficit Round Robin (DRR). The reason is that, while the
Concurrent Linked Queue is indeed lock-free by relying on
compare-and-swap (CAS), it does not eliminate the con-
tention between multiple producers trying to enqueue ele-
ments concurrently. Multi-level queue reduces this type of
contention due to the fact that the threads’ activity is spread
over multiple queues — five in this case. The relatively
higher variance of multi-level queue is primarily due to the
workload generated, which differs across experiments. The
more balanced the workload on the target queues, the lower
the contention. However, even at its minimum, the perfor-
mance of multi-level queue is still higher than that of FIFO
queue. This shows that in multi-consumer/multi-producer
settings, multi-level queue is likely a better choice than lock-
free priority queues and even concurrent FIFO queues. This
finding supports our adoption of multi-level queue for real-
izing Rein in highly concurrent systems such as key-value
stores.

5.3 Simulations
We now turn to simulations to assess the performance of our
techniques at larger scales. We built our simulator in Python
using a discrete-event simulation framework called SimPy.
We evaluate the performance of Rein’s different multi-level
queue policies and compare them to an oracle (idealized)

approach as well as the baseline policy (i.e., FIFO). For the
purposes of load-balancing requests across servers, we use
a straw-man approach, where replicas are chosen for each
operation using round-robin.

We simulate a system with 128 clients and 128 servers at
a concurrency level of eight (i.e., they can service up to eight
operations in parallel), each operating with a replication
factor of three at an average service rate of 3,750 requests/s.
We set our one-way network latency to 50 µs. Similarly
to the real experiments, we drive our workload using the
SoundCloud trace. We also generate the value sizes for the
requests using the same distribution that we used in our
previous experiments. We then generate request inter-arrival
times using a Poisson process in which the mean rate is set
to match 75% of system capacity. The experiments are then
repeated six times with different random seeds.

In addition to using the different variations of Rein, we
also use a clairvoyant oracle. For this method, the client
has complete knowledge of the system’s state. It knows
the instantaneous load on all servers (i.e., queue sizes) as
well as their service rates. In addition, it can also observe
all the in-flight requests that are sent from each client in
the system and their target servers. Using this information,
the oracle can construct a more idealized cost estimation
that not only considers the opset sizes for a request but
also the present as well as the future load on the target
servers; the latter of which is calculated by counting all
the in-flight requests. This allows the client to have a more
accurate prediction of the slack as well as the bottleneck,
which results in better scheduling decisions. Using an oracle
allows us to assess the performance gap that we experience
by adopting a completely decentralized scheduling protocol
in Rein.

Figure 14 shows the read latencies at the median, and
95

th and 99

th percentiles averaged across the six runs. The
standard deviation is not shown as it is largely negligible.
As shown, Rein outperforms the baseline scenario across all
percentiles and improves the latencies by up to a factor of
two at the median, and 95

th and 99

th percentiles. In addition,
Rein is within 7% of the performance attained by the oracle,
which has the advantage of having global state information
that allows it to make better scheduling decisions. Despite
Rein’s lack of coordination, we are still within reach of the
performance of a fully coordinated system.

6. Discussion
How generic is Rein? Rein uses a system model that is com-
monly employed in distributed key-value stores. Its schedul-
ing policies do not leverage any system-specific parameters
and are logically separated from the load-balancing algo-
rithms. As such, the same scheduling heuristics can be ap-
plied to a number of key-value stores (e.g., Memcached,
MongoDB, Redis) without any customization.

0

25

50

75

100

Median 95th 99th

La
te

nc
y

(m
s)

Oracle
Rein
Rein−SBF
Rein−SDS
Baseline (FIFO)

Figure 14: Latency comparison of Rein’s multi-level queue poli-
cies versus the oracle and FIFO baseline.

What is the overhead of using Rein? Our scheduling
heuristics are simple. At the client-side, for every request,
we count the number of operations in each opset and cal-
culate the maximum operation count (to determine the bot-
tleneck). No running statistics or other types of complicated
mathematical procedures are performed. To put this into
context, Cassandra’s dynamic snitch requires considerably
more complex operations to be performed for ranking the
replicas, as it maintain exponentially decaying reservoirs of
latencies toward the different backends. As such, we con-
sider our approach to be minimalistic in this regard.
Why is Rein effective despite being static? Even though
Rein does not account for system state, its lack of dynamism
does not detract from its viability. For larger multigets –
which generate 100s to 1000s of operations and for which
our scheduling decisions matter the most – their response
times are mostly dominated by the service times of their op-
erations. As such, despite the various sources of variability
(e.g., variable waiting times, service rate variations, network
latency spikes, etc.), our statically-derived cost estimate re-
mains valid. However, as part of our ongoing work, we are
modifying the SDS approach to incorporate feedback infor-
mation from the servers pertaining to the sizes of the differ-
ent priority queues (in the form of running averages). Pre-
liminary results have shown reasonable gains from applying
this approach.
Does Rein work at different consistency levels? In the
evaluation, we maintained a consistency level of one for all
our read requests (that is, each operation requires a response
from only one replica, e.g., the server chosen by Cassandra’s
snitch). This setting is quite commonplace in large Web ser-
vices today [29, 46]. It remains to be seen how Rein can per-
form at higher consistency levels; however, it is important
to note that increasing the consistency level also increases
the number of operations being sent to the replicas, which
would provide more opportunities for our scheduling poli-
cies to exploit.
Can Rein be applied to low-latency key-value stores?
Ultra-fast key-value stores [33, 7] have been gaining traction
recently. They usually employ shared-nothing architectures,

where each core is assigned to a partition and there exists
no single-point of contention in the system. Doing this ef-
fectively eliminates context-switching overhead and reduces
operation latency to the order of microseconds. However,
these ultra-low services times can create challenges since the
kernel could become a bottleneck [30]. The implications for
Rein is that most of the queuing in the system could end up
happening at the kernel level. This would put our system at
a disadvantage since Rein operates strictly on the applica-
tion layer. However, kernel-bypass techniques – which are
also increasing in popularity [30, 33] – can be leveraged to
effectively merge kernel-level with application-level queues,
allowing us to realize the full benefits of Rein.

7. Related Work
There is a large body of work in the literature on the prob-
lem of reducing tail latencies for distributed storage sys-
tems. Load-balancing techniques [36, 44] have been em-
ployed to make replica server selections in replicated set-
tings. Other systems techniques such as speculative reis-
sues and duplication of requests [28, 48, 52] have also been
used to reduce latency at the tail. However, all these ap-
proaches offer optimizations that work on the granularity
of requests (or operations). Other approaches that perform
adaptations at longer time-scales have proposed selective
replication of data [19, 47], tuning the placement of data
according to keys accessed frequently [22, 38], configuring
priorities and rate limits across multiple systems stages (e.g.,
network and storage) [54], and batching requests to adapt to
variation in storage-layer performance [34]. None of these
works addresses the added dimension of multiget workloads
and how to leverage knowledge about their structure to opti-
mize scheduling at the backends.

Adaptive parallelization techniques [27, 32] have also
been used for latency reduction in adaptive server systems.
Haque et al. [27] uses dynamic multi-threading to reduce tail
latencies by keeping track of the progress of request execu-
tion times and increasing the level of parallelism the longer
the request stays in the system. To determine the level of par-
allelism, they profiled the workload and hardware resources
offline and computed a policy. The requests then decide on-
line on their level of parallelism based on the computed
policy, the system load level, and their own progress. Li et
al. [32] generalized this approach and aimed to reduce the
number of requests that miss a user-defined target latency.
They serialized large requests in the system to reduce the im-
pact of queuing delay on the smaller requests which is a form
of work-stealing akin to our Shortest Bottleneck First (SBF)
policy. Both the aforementioned works, however, focus on
optimizing execution per server. They do not deal with the
problem of scheduling requests across different servers. In
addition, they do not explicitly target key-value stores, which
offer their own set of challenges.

There is also work in the literature that has some com-
monalities with Rein but is otherwise applied to an en-
tirely different domain — namely, network flow schedul-
ing. Baraat [25] is a decentralized co-flow scheduler that
primarily utilizes FIFO scheduling, but avoids head-of-line
blocking by dynamically modifying the multiplexing level
in the network. Varys [18] – a network scheduling sys-
tem for data-intensive frameworks – utilizes a combina-
tion of Smallest-Effective-Bottleneck-First (SEBF) to min-
imize flow completion times and Minimum-Allocation-for-
Desired-Duration (MADD) to decide the rate allocation for
each flow in a way that slows down all flows to match the
longest flow. Aalo [17], similarly to Varys, operates on the
co-flow scheduling problem but does not assume a priori
knowledge of co-flow sizes. To work around this lack of
clairvoyance, its scheduling algorithm involves using multi-
ple queues with different weights and assigns flows dynam-
ically from higher priority to lower priority queues based on
the amount of data that each flow has accrued. While these
approaches have some commonalities with Rein, they tackle
a different set of problems with their own list of challenges.
To the best of our knowledge, no other work has considered
the benefits of task-aware scheduling for multiget workloads
within the context of distributed key-value stores.

8. Conclusion
In this paper, we propose scheduling techniques that take
advantage of the structure of multiget requests in real-world
data store workloads to reduce aggregate median and tail la-
tencies. Under heavy loads, our scheduling algorithms re-
duced the median, 95th, and 99th percentile latencies by fac-
tors of 1.5, 1.5, and 1.9, respectively. Rein demonstrates that
distributed scheduling can provide significant benefits in the
context of key-value stores without requiring coordination.
While our evaluation focused on Cassandra, because our so-
lution is non-intrusive and relatively straightforward to im-
plement, it should be easy to apply to other systems.

Acknowledgments
We thank the anonymous reviewers and our shepherd,
Kathryn McKinley for their feedback. We are grateful to
Mohammad Alizadeh, Florin Ciucu, Mosharaf Chowdhury,
Juan Perez, and Simon Peter for their valuable comments
and suggestions on earlier drafts of this work. Waleed Reda
was supported by a fellowship from the Erasmus Mundus
Joint Doctorate in Distributed Computing (EMJD-DC) pro-
gram funded by the European Commission (EACEA) (FPA
2012-0030). This project is in part financially supported by
the Swedish Foundation for Strategic Research. In addition,
this work was partially supported by the Wallenberg Au-
tonomous Systems Program (WASP).

References
[1] Akka. http://akka.io/. (Cited on page 10.)

[2] Apache Cassandra. http://cassandra.apache.org/.
(Cited on pages 1 and 2.)

[3] Elasticsearch. https://www.elastic.co/products/
elasticsearch. (Cited on pages 1 and 2.)

[4] Memcached. https://memcached.org/. (Cited on
page 2.)

[5] MongoDB. https://www.mongodb.com/. (Cited on
page 2.)

[6] Redis. http://redis.io/. (Cited on page 2.)

[7] ScyllaDB. http://scylladb.com/. (Cited on page 13.)

[8] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data. In EuroSys,
2013. (Cited on page 5.)

[9] D. Alistarh, J. Kopinsky, J. Li, and N. Shavit. The SprayList:
A Scalable Relaxed Priority Queue. ACM SIGPLAN Notices,
50(8):11–20, 2015. (Cited on page 6.)

[10] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center
TCP (DCTCP). In SIGCOMM, 2010. (Cited on pages 1, 3
and 11.)

[11] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,
S. Kandula, S. Shenker, and I. Stoica. PACMan: Coordinated
Memory Caching for Parallel Jobs. In NSDI, 2012. (Cited
on pages 1 and 3.)

[12] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the Outliers in Map-
reduce Clusters Using Mantri. In OSDI, 2010. (Cited on
page 5.)

[13] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.
Workload Analysis of a Large-scale Key-value Store. In SIG-
METRICS, 2012. (Cited on pages 2 and 9.)

[14] N. Bansal and M. Harchol-Balter. Analysis of SRPT Schedul-
ing: Investigating Unfairness. In SIGMETRICS, 2001. (Cited
on page 6.)

[15] O. Boxma and B. Zwart. Tails in Scheduling. ACM SIGMET-
RICS Performance Evaluation Review, 34(4):13–20, 2007.
(Cited on page 6.)

[16] D. Chakrabarty, Y. Zhou, and R. Lukose. Budget Constrained
Bidding in Keyword Auctions and Online Knapsack Prob-
lems. In WINE, 2008. (Cited on page 4.)

[17] M. Chowdhury and I. Stoica. Efficient Coflow Scheduling
Without Prior Knowledge. In SIGCOMM, 2015. (Cited on
pages 7 and 14.)

[18] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient Coflow
Scheduling with Varys. In SIGCOMM, 2014. (Cited on
page 14.)

[19] R. G. Christopher Stewart, Aniket Chakrabarti. Zoolander:
Efficiently Meeting Very Strict, Low-Latency SLOs. In ICAC,
2013. (Cited on page 14.)

[20] R. A. Cohen. An Introduction to PROC LOESS for Local
Regression. In SUGI, 1999. (Cited on page 11.)

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking Cloud Serving Systems with YCSB.
In SoCC, 2010. (Cited on pages 2 and 9.)

[22] S. Das, D. Agrawal, and A. El Abbadi. G-Store: A Scalable
Data Store for Transactional Multi Key Access in the Cloud.
In SoCC, 2010. (Cited on page 14.)

[23] J. Dean and L. A. Barroso. The Tail At Scale. Communica-
tions of the ACM, 56:74–80, 2013. (Cited on pages 1 and 2.)

[24] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s Highly Available Key-
value Store. In SOSP, 2007. (Cited on page 1.)

[25] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron.
Decentralized Task-Aware Scheduling for Data Center Net-
works. In SIGCOMM, 2014. (Cited on pages 2 and 14.)

[26] L. Flatto and S. Hahn. Two Parallel Queues Created by
Arrivals with Two Demands I. SIAM Journal on Applied
Mathematics, 44(5):1041–1053, 1984. (Cited on page 5.)

[27] M. E. Haque, Y. hun Eom, Y. He, S. Elnikety, R. Bianchini,
and K. S. McKinley. Few-to-Many: Incremental Parallelism
for Reducing Tail Latency in Interactive Services. In ASP-
LOS, 2015. (Cited on page 14.)

[28] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin,
and C. Yan. Speeding up Distributed Request-Response
Workflows. In SIGCOMM, 2013. (Cited on pages 1 and 14.)

[29] C. Kalantzis. Eventual Consistency != Hopeful Consis-
tency, talk at Cassandra Summit, 2013. https://www.
youtube.com/watch?v=A6qzx_HE3EU. (Cited on
page 13.)

[30] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vah-
dat. Chronos: Predictable Low Latency for Data Center Ap-
plications. In SOCC. ACM, 2012. (Cited on page 14.)

[31] G. Kumar, G. Ananthanarayanan, S. Ratnasamy, and I. Sto-
ica. Hold ’em or Fold ’em? Aggregation Queries under Per-
formance Variations. In EuroSys, 2016. (Cited on page 3.)

[32] J. Li, K. Agrawal, S. Elnikety, Y. He, I.-T. A. Lee, C. Lu, and
K. S. McKinley. Work Stealing for Interactive Services to
Meet Target Latency. In PPoPP, 2016. (Cited on page 14.)

[33] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA:
A Holistic Approach to Fast In-Memory Key-Value Storage.
In NSDI, 2014. (Cited on pages 13 and 14.)

[34] J. C. McCullough, J. Dunagan, A. Wolman, and A. C. Sno-
eren. Stout: An Adaptive Interface to Scalable Cloud Storage.
In ATC, 2010. (Cited on page 14.)

[35] M. M. Michael and M. L. Scott. Simple, Fast, and Practical
Non-Blocking and Blocking Concurrent Queue Algorithms.
In PODC, 1996. (Cited on page 12.)

[36] M. Mitzenmacher. The Power of Two Choices in Random-
ized Load Balancing. IEEE Trans. Parallel Distrib. Syst.,
12(10):1094–1104, Oct. 2001. (Cited on page 14.)

[37] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,

H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford,
T. Tung, and V. Venkataramani. Scaling Memcache at Face-
book. In NSDI, 2013. (Cited on pages 1, 2, 3 and 11.)

[38] J. Paiva, P. Ruivo, P. Romano, and L. Rodrigues. AU-
TOPLACER: Scalable Self-Tuning Data Placement in Dis-
tributed Key-value Stores. In ICAC, 2013. (Cited on
page 14.)

[39] H. Rihani, P. Sanders, and R. Dementiev. MultiQueues: Sim-
pler, Faster, and Better Relaxed Concurrent Priority Queues.
CoRR, abs/1411.1209, 2014. (Cited on page 6.)

[40] T. A. Roemer. A Note on the Complexity of the Concurrent
Open Shop Problem. J. of Scheduling, 9(4):389–396, Aug.
2006. (Cited on page 1.)

[41] N. Shavit and I. Lotan. Skiplist-Based Concurrent Priority
Queues. In IPDPS, 2000. (Cited on page 12.)

[42] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha.
Sharing the Data Center Network. In NSDI, 2011. (Cited on
pages 1 and 3.)

[43] H. Sundell and P. Tsigas. Fast and Lock-Free Concurrent Pri-
ority Queues for Multi-Thread Systems. Journal of Parallel
and Distributed Computing, 65(5):609–627, 2005. (Cited on
page 12.)

[44] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3: Cut-
ting Tail Latency in Cloud Data Stores via Adaptive Replica
Selection. In NSDI, 2015. (Cited on pages 2, 10 and 14.)

[45] E. Varki, A. Merchant, and H. Chen. The M/M/1 Fork-Join
Queue with Variable Sub-Tasks. http://www.cs.unh.
edu/˜varki/publication/2002-nov-open.pdf,
2002. (Cited on page 5.)

[46] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabrera III,
P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo, J. Hoon,
S. Kulkarni, N. Lawrence, M. Marchukov, D. Petrov, and
L. Puzar. TAO: How Facebook Serves the Social Graph. In
SIGMOD, 2012. (Cited on pages 1 and 13.)

[47] H. T. Vo, C. Chen, and B. C. Ooi. Towards Elastic Transac-
tional Cloud Storage with Range Query Support. Proc. VLDB
Endow., 3(1-2), Sept. 2010. (Cited on page 14.)

[48] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy,
and S. Shenker. Low Latency via Redundancy. In CoNEXT,
2013. (Cited on pages 9 and 14.)

[49] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture
for Well-Conditioned, Scalable Internet Services. In SOSP,
2001. (Cited on page 9.)

[50] A. Wierman and B. Zwart. Is Tail-Optimal Scheduling Pos-
sible? Operations Research, 60(5):1249–1257, Sept. 2012.
(Cited on page 2.)

[51] M. Wimmer, F. Versaci, J. L. Träff, D. Cederman, and P. Tsi-
gas. Data Structures for Task-based Priority Scheduling. In
PPoPP, 2014. (Cited on page 6.)

[52] Z. Wu, C. Yu, and H. V. Madhyastha. CosTLO: Cost-
Effective Redundancy for Lower Latency Variance on Cloud
Storage Services. In NSDI, 2015. (Cited on page 14.)

[53] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Sto-
ica. Improving MapReduce Performance in Heterogeneous
Environments. In OSDI, 2008. (Cited on pages 2 and 5.)

[54] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and
G. R. Ganger. PriorityMeister: Tail Latency QoS for Shared
Networked Storage. In SoCC, 2014. (Cited on page 14.)

