
QUEUE-MEM: Energy-Efficient Hardware Storage
for Advanced Network Function Acceleration

Mariano Scazzariello1, Tommaso Caiazzi2, Hamid Ghasemirahni3, Dejan Kostić3, and Marco Chiesa3

1RISE Research Institutes of Sweden
2Roma Tre University

3KTH Royal Institute of Technology

Abstract
General-purpose CPU servers have been widely used

to deploy Network Functions (NFs) thanks to their high
flexibility and simplicity of deployment. Due to their
high energy consumption, best practices advocate for only
processing packet headers on CPU cores while temporary
storing the corresponding packet payloads on either network
interface cards or external RDMA-enabled memory.

We show that the seemingly minor decision of where
to store a packet payload greatly impacts overall energy
consumption in state-of-the-art NF systems operating at
terabit-per-second speeds. In fact, we show that if one could
ideally store packet payloads on today’s hardware switches,
while processing headers externally, one could reduce energy
use by 1.8× to 10.9× compared to current practices.

In this paper, we introduce QUEUE-MEM, a general-
purpose, energy-efficient storage solution to enhance NF
deployment that is amenable for implementation with various
existing hardware switches. Building QUEUE-MEM involves
addressing significant challenges associated with payload
storage, as hardware switches lack such functionality. By
carefully exploiting the buffer queues of existing switches, we
are the first ones to build and showcase a robust, energy-
efficient packet processing pipeline capable of handling
terabit-per-second speeds and supporting advanced per-flow
network functions, all while using just a single commodity
server connected to an ASIC switch.

1 Introduction
Network Functions (NFs) are a fundamental component
of today’s networks [38], supporting critical use cases
ranging from enforcing security policies [45], to improving
resource utilization [14], communication performance [28],
and beyond. As NFs become increasingly essential, the choice
of deployment platform — whether hardware-based (e.g.,
ASIC) or software-based (e.g., CPU) — becomes crucial
to achieving low energy consumption, high flexibility, and
advanced NF capabilities.

On the one hand, hardware ASIC switches offer the lowest
power consumption per processed packets. Yet, realizing
advanced network functions on ASIC silicon is difficult due
to the constrained computational and memory resources as
well as the lack of flexibility in logic modifications. Advanced
NFs that operate on individual TCP/UDP flows are therefore
difficult to support entirely in ASIC switches, e.g., switches
lack primitive data structures [4, 46] as well as memory
to track all possible connections [7, 49, 61]. On the other
hand, general-purpose CPUs have been widely adopted to
support arbitrary advanced network functions in an easy-to-
deploy and flexible manner. Their main drawback is however
the higher energy consumption compared to ASIC switches,
potentially up to a factor of 100× [26].

Recent approaches to minimize the involvement of power-
hungry CPU-based devices advocate for splitting packet
headers from packet payloads and to process only the packet
headers on CPU or FPGA devices while temporarily storing
the payloads somewhere in the network (e.g., in the NIC of
the CPU/FPGA device [46], opportunistically in the RAM
of any server in a datacenter [49], on the switch itself [18]).
Packet-splitting approaches promise dramatically increased
throughput in an NF deployment.

In this work, we make the observation that even a simple op-
eration, such as storing a payload, has profound implications
on the energy consumption required for deploying NFs in a
network. Our design analysis (at 1 Tbps) summarized in Fig. 1
indicates a 3.9× and 1.8× higher energy consumption when
storing payloads through RDMA (as in Ribosome [49]) or on
network interface cards (as in nicmem [46]), respectively,

PayloadPark
(Switch SRAM)

Ribosome
(RDMA Server)

nicmem
(NIC Memory)

Queue-Mem
(Switch Buffer)

Location

0
1
2
3
4
5
6
7

Po
we

r U
sa

ge
[k

W
/T

bp
s]

10.9x

3.9x
1.8x 1.0x

Figure 1: The location where a payload is stored impacts the
estimated total power consumption of an NF deployment.



compared to storing payloads directly on the memory of
the switch that splits headers from payloads. This is not
surprising as transmitting payloads outside the switch results
in undesirable overheads, including activating additional ports
on the switch, processing on network interface cards, and
external memory storage.

Temporarily storing the payloads of the packets on
existing ASIC switches is, however, a complex task. ASIC
switches do not offer explicit primitives to temporarily store
and retrieve full-sized packets. None of today’s existing
approaches is able to store entire payloads on ASIC switches
while processing their headers on external devices. As an
example, PayloadPark [18] shows that existing switches allow
programmers to only store and retrieve what the switch has
parsed (i.e., ≤ 160 Bytes). As such, PayloadPark must still
transmit almost full-sized packets to external CPU processors,
resulting in 10.9× higher power consumption compared to
being able to store entire payloads on the switch.
We set four main requirements for an NF deployment:
• power efficiency: minimize energy to process traffic.
• expressiveness: support advanced network functions.
• speed: processing terabits per second of traffic.
• compatibility: runs on existing hardware.
In this work, we present QUEUE-MEM, a novel approach
to temporarily store information (i.e., packets) on existing
hardware ASIC switches. Using QUEUE-MEM, we store
payloads directly on switches and transmit headers to external
CPU servers, ultimately achieving 1.8-10.9× lower estimated
energy consumption compared to existing NF systems.

QUEUE-MEM explores a simple and unconventional idea
that advocates for storing packets inside memory buffer
queues that are naturally present in ASIC switches to absorb
bursts of traffic towards the output ports (see Fig. 2). Such
queues offer a FIFO-based abstraction (with ASIC-based
priority packet scheduling), which is ideal to store payloads
while headers are being processed on external NF processors.
QUEUE-MEM makes the packet buffer memory of a switch
programmable, i.e., enables fetching data stored in the buffer
based on external events (e.g., reception of a header).

While being a simple idea, leveraging the packet buffer
memory on existing ASIC switches is challenging. A switch
forwards packets from the queue based on the speed of the
outgoing port interface associated to a queue. This means that
naively inserting a payload in a queue buffer may not result in
storing that payload for the desired amount of time, i.e., tens
of microseconds for most network functions.

We tackle the above problem by exploiting existing
functionalities for pausing and resuming the processing of
packets in a queue in response to events that the switch
handles at data-plane speed. These functionalities are
commonly present to support the PFC protocol [21] and the
DCQCN congestion control [65] on a majority of widely
adopted switches [5, 24, 36]. At the high level, QUEUE-MEM
(i) splits headers from payloads, (ii) sends the headers to an

hdr
payload2

hdr’ payload

input

output

payload
output-port queuebuffer

payload
ASIC switch

payload1
payload

send
header

release payload

payload2

NF processor
∼20 𝜇s         >100 Mpps

rebuild
packet

Figure 2: QUEUE-MEM stores payloads in the queue of a
port. A high-performance external NF system today may
process 100s million packets per second, each within ∼ 20µs
of latency. The switch buffers payloads in the per-port queues
until the processed headers are sent back from the NF.

external NF, and (iii) stores the payloads in a queue by pausing
that queue. QUEUE-MEM does not dequeue a payload from a
queue (i.e., resume processing packets on that queue) until the
processed header returns from the external NF. While simple
in theory, realizing this idea is non-trivial. First, existing
operations to pause and resume a queue do not operate at
the per-packet level, making it extremely difficult to pause
and resume processing of packets in the queues at the correct
time.1 Second, one should not affect any background traffic
that should not be sent to the external NF. Third, we need to
deal with any potential packet drop (e.g., a header), which
may stall the processing of packets in a queue. Developing a
system that effectively mitigates the “brittleness” presented
by these challenges is a complex task.

Our key idea is to embrace the indirect and coarse-grained
capabilities of the pause/resume functionalities of today’s
switches and guarantee that the system only dequeues batches
of payloads when their corresponding headers have been
processed, taking care of potentially dropped headers at the
external NF. Guaranteeing this correct release of batches
requires to carefully time with sub-microseconds levels of
precision the pause/resume actions triggered by a header
traversing the processing pipeline while recovering from
potential packet losses.

We evaluate the robustness of our implementation of
QUEUE-MEM in a realistic testbed under a different number
and types of network functions and adversarial workloads. To
the best of our knowledge, we are the first to run an NF system
that processes beyond 1 Tbps of traffic running advanced
NF chains (e.g., rate limiters, Layer-4 load balancers,
AES encryption of header fields) on a single CPU-based
server, allowing us to consume 1.8-10.9× lower energy
than alternative existing approaches. To summarize, our
contributions are:
• We are the first to quantify the massive energy consumption

overhead of different payload storage systems.
• We are the first to present an approach for storing entire

payloads of data on a switch in a programmatic and energy-
efficient manner without modifications to existing switches.

1Pausing/resuming queues has been proposed in Conweave [54] for a
different problem with different requirements. Conweave does not require
the same per-packet level of precision in pausing/resuming queues that we
require in our system, making their approach unsuitable here.



HW Base Power
Usage

Additional Power
per Gbps

Additional Power
per Mpps

16-nm ASIC 108 W [26] 0.026 W [26] 0.312 W (1.5 KB pkts)

x86 Server 200 W
1.75 W (1.5 KB pkts)
2.36 W (64 B pkts)

21.07 W (1.5 KB pkts)
1.21 W (64 B pkts)

RDMA NIC 24.9 W [41] - -
FPGA - 0.75 W [61] 9 W (1.5 KB pkts)

Table 1: Power consumption of different devices for
deploying NFs.

• We present our key idea of exploiting the packet buffer
memory that today’s switches deploy for buffering packets
during congestion events. We describe challenges in
using existing operations for pausing and resuming queues
directly from the data plane to control the storage of
payloads of data in the queues. We overcome these
challenges by devising a carefully timed batch-based
mechanism to dequeue packets from their queues.

• We are the first to demonstrate through an implementation
on an ASIC switch the ability of QUEUE-MEM to
support the processing of advanced NF chains at over
1 Tbps with a single external CPU-based server and no
additional resources assumptions on opportunistic resource
availability (e.g., Ribosome requires 14 additional RDMA-
based shared servers for this level of performance).

• We will release all our P4 code for running QUEUE-MEM
on programmable ASIC hardware.

2 Where to Store a Packet Payload?

We now explore the architectural design space for network
functions with a particular focus on storing payloads, energy
consumption, and performance. We start the discussion with
a minimal background and then move to traditional designs
and state-of-the-art mechanisms. We focus on shallow
stateful NFs, which are widely deployed NFs that (i) process
each packet only based on the header of the packet and
(ii) must keep some state in the NF to process correctly
the incoming packets. These network functions represent
a large fraction of the existing NFs, including Layer-4 load
balancers [12, 14], rate limiters [51], encryption/decryption
of header fields [45], traffic optimizers [28, 55], and packet
schedulers [16]. Network functions that need to process the
entire packet (e.g., deep packet inspection) go beyond the
scope of this paper as the payload should be stored at the
same location where the packet is processed.

A power model for estimating energy costs. We carry out
our energy analysis based on real-world testbed measurements
as well as information available on datasheets. We rely
on the same methodology used in previous industrial
work, i.e., Tiara [61], with some differences (to make
the comparison as fair and up-to-date as possible). In
fact, we model the power consumption proportional to the
number of processed Mpps rather than Gbps, as our testbed
measurements show that the computational load is mainly
influenced by the number of packets rather than the size of
the packet. Even if we carry out our analysis on specific

hardware configurations, we expect the overall trends to
remain consistent across different hardware setups. Table 1
summarizes the results using a Layer-4 load balancer network
function as a reference. We rely on the most recent real-
world benchmark of programmable ASIC switches to derive
the power consumption of a 32x100-Gbps programmable
ASIC switch [26]. The base power consumption is 108 W
and the cost increases by 26 mW per additional Gbps of
forwarded traffic. Since the benchmark provides data
only in terms of power per Gbps, we estimate the power
consumption per additional Mpps by assuming a packet size
of 1.5 KB, which results in ∼312 mW per Mpps. For CPU-
based servers, we rely on our own benchmarks as the data
from the Tiara paper is not up-to-date. In our testbed, we
measure the power usage over 30 minutes (using a SmartMe
power meter [53]) while running a load-balancer NF in
FAJITA [17] on a server equipped with Intel®Xeon®Gold
6444Y @ 3.60 GHz, 128 GB of RAM and one Mellanox
Connect-X 7 NIC. We carry out two separate measurements:
(i) NF handling 100 Gbps of 1.5 KB packets (∼8 Mpps), and
(ii) NF processing 100 Gbps of 64 B packets (∼142 Mpps),
representing a workload focused on header processing. We
verified that FAJITA can process >100 M headers per
second per CPU socket, as stated in the paper [17]. Our
measurements show that the idle server power consumption
is ∼200 W with an added power draw of 21.05 W and 1.21 W
per Mpps of processed traffic for 1.5 KB and 64 B packets,
respectively. We do not consider the RNIC consumption in
this value. To estimate the energy consumption of RNICs, we
refer to the ConnectX-7 hardware datasheet, which specifies
a power consumption of 24.9 W [41]. We do not adjust this
value based on the Mpps, as RNICs lack load-dependent
power-saving mechanisms, and therefore we assume constant
consumption. For FPGAs, we again rely on hardware
datasheets where an AMD Xilinx Alveo U50 equipped with
2x100-Gbps port interfaces, which has similar characteristics
to the FPGA used in Tiara, consumes 75 W [57]. As we do
not know the idle power consumption, we assume that the
power consumption grows linearly from zero to 75 W based
on the processed traffic, with 9 W per Mpps (with 1.5 KB
packets). We verify that the power consumption using this
approximation is in line with the estimate used in Tiara. We
are now ready to analyze the cost of different NF deployments
with a focus on the location where headers and payloads
are processed and stored, respectively (refer to App. A for
comprehensive details on the methodology and formulas).

Hardware ASIC switches are energy-efficient but poorly
suited to support stateful NFs. Ideally, an NF processor
would run entirely on the data-plane of an ASIC switch,
striking the best Watt-per-packet performance in the NF
design space. We show the energy consumption of this ASIC-
only approach in Fig. 3 using the light green line (with right-
facing triangle marks). In the figure, the x-axis denotes the
number of packets per second and the y-axis shows the power



0 10 20 30 40 50 60 70 80 90 10
0

Input Throughput [Mpps]

10−1

100

101

Po
we

r U
sa

ge
 [k

W
]

1.8x 2.7x 3.9x

Baseline
nicmem

PayloadPark
Ribosome

Queue-Mem
Tiara

Ideal

Figure 3: Power usage of different packet processing pipelines
(considering an average packet size of 1.5 KB).

consumption of the NF deployment. Our analysis shows
a cost of 134 W to process 1 Tbps of traffic on our 16-nm
programmable ASIC switch.2 Unfortunately, as evidenced
in recent work advocating for CPU-based NF deployment,
today’s existing ASIC switches do not support advanced
stateful NFs as these either require excessive memory to
store the state or their logic is too complex for running on
ASIC [49] as it is the case, for instance, of TEA [30]. For
example, Tiara [61] has shown that an ASIC switch can only
store state for 200 K connections, which is insufficient for
existing workloads. Ribosome [49] has further shown that
even a 10 Gbps real-world trace today would use 20% of the
existing memory of an ASIC switch, and a 25.6-Tbps switch
could only store 0.3% of the necessary flow state to process
packets, even with just a single NF. Similar problems have
been presented for inserting new state into key-value data
structures, where ASIC switches could only insert 1 out of
100 flow states because of the limited insertion speed [7].3

Traditional NF processors are power-hungry. To imple-
ment complex NFs, today’s state-of-the-art systems offload
simple parts of NFs to ASIC switches (e.g., a small
forwarding/routing/ACL table) [63] and run more complex
parts on external NF processors (e.g., NFs requiring to keep
per-connection state at high frequency and low latency).
For instance, consider a traditional NF deployment where
CPU-based NF processors are connected to a switch, from
which they receive incoming packets and retransmit back the
processed packets. Using our energy-consumption data from
Table 1, we observe in Fig. 3 that this “baseline” approach
(gray line with circle marks) requires 10 CPU sockets to
process 1 Tbps of 1.5 KB packets (i.e., 83 Mpps), amounting
to 5.83 kW. This results in a significantly higher power
consumption compared to the 134 W needed by a single 16-
nm ASIC switch. Further, this approach wastes half of the
bandwidth on the ASIC switch to move packets back and
forth from external CPU servers.

2The power consumption is even lower on new generation switches, e.g.,
less than 1 W per 100 Gbps on Tomahawk 5 [6].

3Approaches like Switcharoo [7] to install flow states at data-plane speed
suffer from multiple issues: (i) cannot implement complex NFs, and (ii) can
only store states for sub-ms durations, whereas L4 load balancers require
second- or minute-level storage.

FPGA-based packet processors consumes less yet signifi-
cant amount of energy. Tiara [61] is a powerful load balancer
system that reroutes packets from a switch to FPGAs (for the
fast path) and x86 servers (for the slow path) performing per-
packet load balancer calculations. Fig. 3 shows the power cost
of a Tiara-like system (purple line with diamond marks). Tiara
requires an ASIC switch, 10 FPGAs and one CPU socket. We
assume that only one tenth of the total load goes through the
slow path (i.e., the CPU). Considering this, the total power
consumption is 1.40 kW at 1 Tbps (i.e., 83 Mpps), roughly
10× higher than an ASIC switch. Similar to CPU-based
deployments, Tiara must reserve half of the bandwidth of the
ASIC switch. Moreover, Tiara is tailored for load balancing
and supporting other advanced network functions requires
significant costs in developing code to synthesize on FPGAs.

Shallow network functions do not process payloads.
Shallow NFs [18, 46] are widely deployed network functions
that only process fields contained in the packet header, which
have a negligible fixed size. One such example is the load
balancer function used in Tiara, which only needs to process
the 5-tuple of a connection. Other examples are access
control lists, rate limiters, NATs, packet schedulers [16],
transport optimizers [28], forwarding path validators [45], and
beyond. Yet, the aforementioned packet processors transmit
& receive full-sized packets from the switch to external
packet processors. Receiving payloads has a significant
impact on the performance of the NF processor (e.g., by
cache pollution [15, 16]). For these reasons, three recent
systems have advocated for only processing packet headers
on external NF processors (for better CPU cache hit-ratio
and utilization) and storing payloads in various locations:
on the NIC of the NF processor server with nicmem [46],
on RDMA servers with Ribosome [49], or on the switch
with PayloadPark [18]. These approaches promise to bring
unparalleled NF performance by highly optimizing packet
processing on power-hungry CPU devices. We analyze
the actual energy consumption benefits of the above three
approaches (using the high level architecture overviews from
Fig. 4) in the following paragraphs.

nicmem: Splitting packets on the NIC of the server brings
energy savings but wastes half of the switch ports. In
nicmem (Fig. 4a), a traditional switch transmits the entire
packet to an external CPU. The network interface card
receives the packet, splits the header from the payload,
stores the payload on a cache memory on the NIC, and
processes only the header on the CPU, thus minimizing cache
pollution. State-of-the-art systems have shown the ability of
commodity servers to process packets at > 100 Mpps [17].
Consequently, a single NF server can be equipped with
multiple NICs to handle such a volume of packet headers
on the CPU. The CPU model of our analysis supports up
to 80 PCIe 5.0 lanes, enabling to have up to five NICs
within a single physical machine. We show in Fig. 3 the



input

NIC

h

NF

Split Merge

h'

output

pppp

pppp

Local Storage

h p h'

p

p

PCIe

Switch

p

Simple Forwarder

h' ph p

(a) nicmem

input

ASIC switch

NF

Split Mergeh'

output

h'h p
h

p

p

p

RDMA 
Server

(b) Ribosome

input

ASIC switch

h

NF

Split Mergeh'

output

match-table memory (registers)

h p h' p1

p1 p1

p2

p2

p2

p2

(c) PayloadPark

Figure 4: A high-level comparison of three systems that split packet payloads and store them while the header is being processed
on an external NF. None of these systems can store the entire payload on the switch.

power consumption of nicmem (orange line with top-facing
triangle marks), which requires two servers equipped with
one CPU socket and five NICs at 1 Tbps, resulting in a power
consumption of around 0.93 kW per Tbps of processed traffic,
still roughly 9× higher than an ASIC-only approach. As a
drawback, nicmem consumes 2× more ports than an ASIC-
only approach, as fully-sized packets must be transmitted back
and forth between the switch and external packet processors.

Ribosome: Storing payloads on external servers is energy
inefficient. In Ribosome [49] (Fig. 4b), a programmable
switch directly splits the header from the payload, only trans-
mits the header to an external processor, and opportunistically
stores the payload on the memory of any server in a datacenter
using CPU-bypass technology (i.e., RDMA). We show in
Fig. 3 the power consumption of Ribosome (blue line with
bottom-facing triangle marks). Ribosome requires a single
NF server (as it receives only packet headers), one ASIC
switch, and at least 14 RDMA-enabled shared servers to store
payloads (as stated in the paper, each RDMA server is able to
process up to 75 Gbps of payloads). The power consumption
of Ribosome at 1 Tbps reaches a total of 1.99 kW, roughly
20× the power consumption of a single ASIC switch.

PayloadPark: Storing only a few bytes from the payload
does not bring energy savings. In PayloadPark (Fig. 4c), the
authors aim to store payloads inside a switch using the local
SRAM memory and stateful ALUs available on the switch.
Unfortunately, existing programmable switches only allow
storing bits that have been parsed. This limit is 160 Bytes
(p2 in Fig. 4c), leaving PayloadPark unable to store entire
payloads on the switch and transmitting large fractions of a
packet to external NF processors (p1 in Fig. 4c). Fig. 3 shows
the power consumption of PayloadPark (red line with dot
marks), which requires 10 servers to process 1 Tbps of traffic,
resulting in one of the highest power consumption around
5.66 kW. Even assuming an ideal switch that parses the entire
packet (which would be extremely expensive in hardware),
PayloadPark would require dedicated SRAM memory to store
packets. However, SRAM memory is a scarce resource on
a switch. In contrast, we rely on a small fraction of the
memory for buffering packets that already exist on today’s
switches without affecting the SRAM memory available to

store forwarding ACL, or firewall rules.

QUEUE-MEM: storing full payloads on ASIC switches
would bring enormous energy savings. We analyze the
potential benefits of storing the packet payloads entirely on
the switch, which is the approach we take in this work, and we
refer to as QUEUE-MEM. In this approach, an NF deployment
only requires one CPU socket and one ASIC programmable
switch to process more than 1 Tbps of traffic. Fig. 3 shows
that the power consumption of such an approach is around
517 W when processing 1 Tbps of traffic. To put this number
into perspective, storing payloads on the switch results in
1.8× and 3.9× energy savings compared to equivalent CPU-
based NF deployments. Surprisingly, by storing the payload
on the switch, a CPU-based approach becomes 2.7× more
energy efficient than an FPGA-based deployment like Tiara.

Summary: the payload-storage location matters. While
storing payloads is a relatively simple operation entailing a
write and read operation, we demonstrated that the location
where the payload is stored greatly impacts the total power
consumption of the NF deployment, between a factor of
1.8-10.9× in CPU-based deployments. To the best of our
knowledge, we are the first ones to analyze this phenomenon.
Table 2 summarizes the comparison among existing systems.

In the following, we tackle the following question: “Can we
design an NF system that is power-efficient, easy-to-deploy,
and supports advanced network functions?”

3 A Queue-based Packet Storage
We envision a new approach for increasing the throughput of
widely-deployed shallow NF packet processors. In our design,
called QUEUE-MEM, we process headers on an external NF
processor and we store packet payloads on the per-port queues
of an ASIC switch. Switch manufactures design these queues
to buffer packets whenever the rate of incoming packets
directed towards an outgoing port exceeds the rate at which
packets could be forwarded on that port, e.g., during a traffic
incast, congestion events, or differences in the input/output
link speeds. The memory allocated to such queues is large,
i.e., 20 MB on 16-nm 3.2-Tbps switches and 64 MB on 7-nm
12.8-Tbps switches [19]. To put things into perspective, 5 MB
of memory can be used to store payloads for up to 40 µs when



Processing
Network Power Advanced

Throughput Efficiency NFs?
(W/Tbps)

PayloadPark [18] half ✗ 5662 yes ✓

Ribosome [49] half ✗ 1996 yes ✓

Tiara [61] half ✗ 1402 yes ✓

nicmem [46] half ✗ 937 yes ✓

QUEUE-MEM full ✓ 517 yes ✓

ASIC-only full ✓ 134 no ✗

Table 2: Comparison among existing systems. “Half”
throughput means that only half of the hardware switch
throughput can be theoretically achieved.

receiving 1 Tbps of traffic.
We first explore the design space to examine where the

payload can be stored within the switch without relying on
external resources. We then present our approach for storing
payloads in a queue by leveraging the Advanced Flow Control
capability of new-generation ASIC switches, which enables
per-queue pausing/resuming directly from the data plane [32].

3.1 Storing Payloads within the Switch
The ideal place to store the payloads is in the switch memory,
as it prevents wasting bandwidth on the switch to transmit
and retrieve payloads. Within current ASIC switches, there
are two main memory areas suitable for storing data, both
implemented using the SRAM technology: (i) ingress/egress
packet buffers and (ii) match-table resources. Packet buffers
are large memory areas utilized by the switch to temporarily
store packets when processing them or during congestion
events. To the best of our knowledge, packet buffers are
not accessible with an API in a programmatic manner in
any of the existing switches. Conversely, the match-table
memory can be fully controlled by data-plane programmers
for allocating match-action tables (e.g., IP routing) or various
stateful objects (e.g., registers for network monitoring). One
may decide to use the match-table memory for storing and
retrieving payloads in the data plane, leveraging existing
APIs, as already implemented in PayloadPark [18]. However,
approaches based on match-table memory ultimately create
copies of packets that anyway exist in the packet buffer
memory of the switch, thus wasting those scarce memory
resources needed to support state for certain packet processing
functions. Increasing the SRAM memory on a switch to
support the storage of 40µs of packets at 12.6 Tbps would
cost ∼ 5k$, which is cost ineffective.4

An alternative: On-switch FPGA-accessible memory.
Some market-available switches integrate both an ASIC and
an FPGA within the same hardware box, with certain ports
hardwired internally between the two chips [2]. With this
setup, one can store payloads in the additional memory
provided by the FPGA (e.g., BRAM, HBM). However, this
solution comes with two main drawbacks: (i) the effective

4We assume a cost per-MB of a suitable SRAM chip to be roughly
80 $ [10], resulting in ∼ 5k $ for 64MB of storage.

throughput of the switch is halved due to hardwiring half of
the ports between the ASIC and the FPGA chips and (ii) the
increased buying and energy costs introduced by the FPGA,
which are significantly higher than ASIC ones.
The approach taken in this paper carefully leverages the
already-available packet buffer memory of ASICs to store and
retrieve the payloads without a programmable support from
the switch (i.e., an API). We leverage the Advanced Flow
Control (AFC) capability of new-generation programmable
ASICs to meticulously control the egress queues [32]. AFC
allows us to pause and resume processing of packets from any
queue on the switch with data-plane events.

3.2 Creating a FIFO Buffer using AFC

We now describe the design of QUEUE-MEM, a queue-based
packet storage based on the Advanced Flow Control feature
of ASICs. This capability is commonly used to implement
advanced queuing mechanisms, including PFC [21], with user-
controlled parameters. We unconventionally take advantage
of the possibility to programmatically pause/resume queues to
implement a FIFO buffer inside the switch, holding payloads
while their headers are processed on the external NF.

Key-idea: pause/resume queues to buffer payloads. AFC
allows programmers to directly control a single queue state
from the data plane based on packet processing events, i.e.,
each packet can pause/resume a single queue transmission by
setting a specific metadata in the ingress and egress processing
pipelines. When the switch receives a packet, we leverage
AFC to pause one of the available port queues in order to
temporarily buffer the payload. At the same time, the header
is forwarded to the external NF. Upon receiving the processed
header back on the switch, it resumes the queue where the
corresponding payload is buffered. Then, the header is
temporarily stored in the egress. Subsequently, when the
payload exits the queue, the switch recombines it with its
corresponding processed header. The resultant packet is then
forwarded to the output port.

Building a short-term FIFO storage. This simple idea
allows exploiting the “hidden” buffer memory of the switch to
store data in a programmatic manner. However, as the switch
relies upon this buffer for forwarding, we can only store data
for a short amount of time. Luckily, modern packet processors
are capable of handling data in tens of microseconds, making
it feasible to store payloads in the switch’s packet buffer,
without affecting its functioning, during NF processing. As
mentioned at the beginning of § 3, 5 MB of memory can be
used to store payloads for up to 40 µs when receiving 1 Tbps
of traffic. With an external FPGA-based processor of packet
headers, the processing latency may reduce by up to 10×
(i.e., 4 µs [61]), thus reducing even further the buffer memory
requirements (i.e., 5 MB for 10 Tbps).

Challenge: AFC cannot dequeue a single packet. Ide-
ally, the data-plane would allow specifying the number of



dequeued packets upon resuming a queue. In this way,
each NF-processed header would be able to instruct the
switch to dequeue one packet from the front of the queue,
corresponding to its previously stored payload. In practice,
current implementations of AFC in P4-based switches provide
a coarse-grained control of queues’ transmission, with no
guarantees on the number of dequeued packets. Indeed, if all
packets are stored in the same queue, activating it would
transmit all the enqueued packets before the next “pause
queue” command is issued. The number of dequeued packets
therefore depends on the time that it takes to issue a “pause”
queue operation after a “resume” one.

Challenge: Delays in activating/deactivating AFC. Even if
the metadata to control queue transmission can be set at any
point in the programmable pipeline, current implementations
of AFC only work at ingress/egress deparser level. This means
that an ASIC may act upon the metadata value only when
a packet reaches the end of the pipeline plus eventual non-
deterministic queueing. Consequently, controlling queues
from the data plane introduces a delay equal to the time
needed to traverse the pipeline. For instance, suppose a
processed header enters the switch and needs to resume and
then pause again the queue containing its payload. Since each
packet can interact with AFC only in deparsers, the header can
control the corresponding queue twice: once in the ingress
deparser and once in the egress deparser. Hence, after the
queue is resumed in the ingress, the header must reach the
egress deparser to issue the pause command. This implies that
during queueing and egress pipeline traversal, other payloads
may also be dequeued. This side effect must be carefully
handled by the system to prevent packet drops.

Our idea: Batch-based queue control. Modern ASIC
architectures commonly allocate multiple queues per port
for implementing QoS traffic policies or advanced scheduling
mechanisms [50,52]. In programmable switches, it is possible
to specify the destination queue of each packet directly
from the data-plane logic. We leverage this possibility in
our design to distribute payloads among multiple queues,
building batches of packets that are only released when
all their corresponding processed headers return from the
NF. Unfortunately, existing ASICs do not expose APIs
for accessing queues’ state (i.e., paused or resumed) and
the number of enqueued packets. Therefore, QUEUE-MEM
implements a custom data-plane mechanism to track both
the number of enqueued payloads and the forwarding state
of each queue, and it carefully pauses/resumes queues in a
way that guarantees batches are released without overlapping
with each other. This challenging per-batch design eliminates
potential packet drops caused by undesired payloads leakages.

3.3 System Design
We now present details about the QUEUE-MEM design. A
high-level overview is shown in Fig. 5.

ASIC switch

Ingress Egress

Splitter

NF Server

pp

pp

pp

pp

h

h'

h'h'

Header Storage

p

h p

p

h' p

. . .

Packet 
Reconstructor

Egress Queue 
Controller

q = 1

Notify
(Resume Queue)

Active Queue p PayloadPaused Queue

Activate

1

q = Q

nq = 2

ECMP Queue
Selector

2

4

5

6

Original Headerh Processed Headerh'

0 1 Q…

Header Tracker

Q-1
1 10 4

h' (q=1, 4)

Traffic Manager

3

Q-1 

0

1

Slice 0

Slice 𝑖

s = 𝒊

Q

Figure 5: Design overview of QUEUE-MEM.

Splitting incoming packets and enqueueing payloads. At
the high level, a packet pkt entering the switch 1 is split
into header h and payload p. As already mentioned, the main
idea is to create fixed-size batches within the queues. We
partition the available per-port queues into distinct slices, each
of which is selected by packets based on a hash computed
over their 5-tuple. This method reduces the chance that
packets belonging to the same flow will be placed into
different queues. To maximize the time a queue holding
a batch remains unselected 2 we exploit a round-robin
selection method within each slice, which fills each queue
one after the other. This mechanism maximizes the time
a queue holding a batch remains unselected, ensuring the
batch integrity during this period. To correctly recombine
payloads with their post-NF-processed headers, we assign to
both the header and its payload: (i) an incremental index idx
referencing the memory array location where the header will
be temporarily stored after NF processing, and (ii) an id that
uniquely identifies a packet and ensures that the payload is
not recombined with any other stored header, which could
lead to vulnerabilities or data integrity issues. Moreover, the
switch keeps track of the selected queue q for a packet and
the number of packets in the queue, namely nq, for each
port. In case nq = 1 (i.e., the first packet of the batch), the
switch instructs the ingress AFC to pause the queue q when
processing the incoming packet. At this point, the switch
forwards the header to the external NF, while it buffers its
payload in the selected queue. For any other value of nq, the
switch simply forwards the header to the NF, and it buffers
the payload in the queue without activating the AFC.

Storing processed headers and releasing buffered batches.
Consider a processed header h′ returning from the NF and
entering the switch. The ingress pipeline 3 keeps track of
the number of processed headers for each queue, i.e., nh′

q . We
assign this value to a metadata, that is forwarded to the egress
pipeline along with h′. We dedicate a separate port queue
(at highest priority) to prioritize headers forwarding, thus
minimizing non-deterministic processing times. In the egress,
the switch 4 temporarily stores h′ in several register arrays at
the location specified by idx. Next, the switch checks if nh′

q is
equal to the batch size: if so, h′ is the last header of the batch,
meaning that 5 the queue q can be safely resumed to release



the payloads. When each payload pi is dequeued, it reads
the corresponding header register at location idx, it checks if
its id is equal to the one stored, and, if so, 6 it reconstructs
the entire packet and forwards it. Note that QUEUE-MEM
releases batches once all processed headers are received from
the NF, without relying on time-based mechanisms.

Handling header drops. QUEUE-MEM handles possible
header drops by employing an additional register sq that tracks
the status of each queue q, i.e., PAUSED or RESUMED. By
combining sq and the number of processed headers for a queue
nh′

q , the system is able to detect headers drops and to react
upon them to restore a consistent state. So, when the switch
receives an input packet pkt with nq = 1 (i.e., the first packet
of the batch) that should be enqueued in the same queue q,
if the previous batch has been correctly released, the value
of sq should be equal to RESUMED. Instead, if sq is equal
to PAUSED, it means that at least one header of the previous
batch has been dropped. In this case, nh′

q is set to 0, sq is set
to RESUMED, and the ingress AFC is instructed to release
the stalling batch. We cannot immediately re-pause queue
q with the same input packet, as it is possible to modify
queues’ transmission once per ingress/egress pipeline. For
this reason, pkt cannot be split, as its payload would be
released along with the resumed batch. So, after resuming
the queue, QUEUE-MEM resubmits the packet to re-process
it as a new one. Further optimizations may be possible, e.g.,
resuming a queue with packets enqueued in a different queue.
Since we do not observe any significant negative impact on
the effective throughput in our evaluation even under a heavy
header loss rate, we leave these optimizations as future work.

3.4 Discussion
Setting the batch size. It is important to select a proper batch
size, as this parameter impacts both buffer utilization and the
delay experienced by payloads. Opting for a larger batch
size allows exploiting a bigger portion of the buffer, but
it also results in increased delays for payloads (especially
for the first packet in the batch), which must wait for more
headers before they can be released. Conversely, selecting
a smaller batch size leads to reduced delays for payloads
but shortens the time it can be buffered, as the algorithm
cycles through the queues more quickly and may interpret
delays as dropped headers. We suggest setting the batch
size in a conservative manner, assuming a higher expected
throughput, thus preventing re-using the same queues before
the headers have been processed. By doing so, QUEUE-
MEM guarantees that payloads are released only when all
the corresponding headers have been processed by the NF
and returned to the switch. To put things into perspective,
consider a switch receiving 100 Gbps of packets with an
average size of 1 KB and an external CPU-based NF with
a processing time of 40µs. According to the BDP, the switch
has to buffer ∼500 payloads in its queues. Suppose that
the switch has no processing latency (i.e., all operations

are instantaneous) and it can use 30 queues as buffers, the
resulting batch size is 16 KB (i.e., 16×1-KB or 32×500-B
packets). When looking at the latency overhead induced
by batching, consider the aforementioned calculations and
an inter-packet gap ipg = 80ns. The additional latency
introduced on the first packet of the batch is bs · ipg =∼ 1.2ns.
At 10 Gbps, the delay is ∼ 8µs, which is acceptable for inter-
datacenter or user-facing packet processing. We leave as
future work the development of a mechanism to dynamically
adjust the batch size by monitoring the switch load.

Supported NFs. The design of QUEUE-MEM imposes a
limit on the class of NFs it can support, which is determined
by their processing time. Since the switch provides only
limited buffer capacity, long NF processing times can exceed
what the switch can support. For example, if an NF takes
a second to process a header, then at line rate the switch
would need to buffer an entire second of payloads. Based
on BDP at 100 Gbps, this corresponds to roughly 12 M
payloads, which is about 11 GB if each payload is 1 KB. Such
a requirement is far beyond the buffer capacity of current-
generation switches [27, 36, 58]. Nevertheless, QUEUE-MEM
targets datacenter environments, where NFs typically have
processing latencies on the order of 100 µs [33, 61].

Deployment model. Two key features enable a simple
deployment of QUEUE-MEM: (i) it does not require any
external (shared or dedicated) resources to store payloads, and
(ii) it operates without modifications on the switch hardware
or the NF side. This allows QUEUE-MEM to be deployed
in a plug-and-play manner, overcoming all the operational
complexities suffered by Ribosome [49]. In fact, using shared
RDMA servers to store payloads implies that the switch must
be a Top-of-Rack node in a datacenter, while QUEUE-MEM
is a self-contained box that can be deployed (together with
a directly-connected NF server) in any location of a fabric
(see App. B) or a wide area network (with no large pools of
shared servers). Recall that QUEUE-MEM adds a minimal
amount of latency in the order of tens of microseconds due
to batching payloads, which is still reasonable even for NFs
processing intra-datacenter traffic, and negligible for other
types of traffic (e.g., user facing).

Implementing QUEUE-MEM on different platforms. We
present our system design based on the Tofino 2 ASIC archi-
tecture. However, QUEUE-MEM can be also implemented on
different programmable hardware architectures that support
(i) packet trimming and (ii) per-queue control (such as PFC).
Notable alternatives include state-of-the-art switches from
Juniper [58], Broadcom [1], and Nvidia Mellanox [43], which
offer the necessary features and have packet buffer pools
comparable in size to that of the Tofino 2 ASIC [27, 36, 58].

4 Implementation
We implement QUEUE-MEM in P4_16 language (≈ 1420
lines of code), and compile it for the Intel Tofino 2 ASIC [23]



Resource Usage
Stages 20
SRAM 24.30%
TCAM 0.60%

VLIW Instruction 8.00%
Exact Match Crossbar 8.70%

Ternary Match Crossbar 1.10%

Table 3: ASIC resources used by QUEUE-MEM.

using P4 Studio 9.11.1. We will publicly release all the code.

ASIC resources usage. Table 3 shows the additional ASIC
resources consumed by QUEUE-MEM based on the Tofino
2 compiler’s output. The implementation occupies a single
pipe, leaving space for including additional user-defined logic.
Overall, QUEUE-MEM consumes a negligible amount of
VLIW Instructions, Match Crossbar, and TCAM. For SRAM
usage, we allocate 16K × 15× 4B register entries to store
headers, which suffice to sustain 1.4 Tbps of input traffic used
throughout the evaluation. A portion of the SRAM is also
allocated for tables and registers that manage queues’ states.

Data plane. QUEUE-MEM’s data-plane implementation
follows the design of § 3. Packet splitting is achieved by
leveraging the packet mirroring and truncation capabilities of
the switch ASIC [22]. We provision compiler’s flags to set the
split threshold (i.e., size at which packets remain “unsplit”)
and the size of registers used for storing headers.

Control plane. Our QUEUE-MEM implementation introduces
a suite of P4-Runtime APIs designed to facilitate runtime
system configuration. Such APIs enable users to selectively
activate QUEUE-MEM on specific switch’s ports, giving also
the possibility to dynamically manage payload buffering
across specific queues, allowing the remaining ones to
implement different traffic policies. In this way, network
architects can configure the number of QUEUE-MEM’s
queues, the number of queues’ slices and the size of payloads’
batches, according to the workload, leaving enough resources
for other switch operations. Operators are also allowed to
filter a subset of NF traffic as “non-splittable”.

5 Evaluation
In this section, we assess the performance achievable by
QUEUE-MEM. We will release all the code, including scripts
for reproducibility. We aim to answer seven main questions:
Q1 Does QUEUE-MEM handle different traffic patterns?
Q2 Does QUEUE-MEM recover from header drops?
Q3 Does QUEUE-MEM support advanced NFs?
Q4 Does QUEUE-MEM interfere with background traffic?
Q5 Does QUEUE-MEM affect the end-to-end latency?
Q6 Does QUEUE-MEM affect per-flow packet ordering?
Q7 Does QUEUE-MEM support real workloads?
App. D provides additional evaluation results.

Testbed setup. QUEUE-MEM’s data plane is deployed on
a 32× 400 Gbps Edgecore AS9516-32D with Intel Tofino
2 ASIC [24]. The switch forwards traffic based on ECMP.
Fourteen of its ports are connected to a 32 × 100 Gbps

Edgecore Wedge100BF-32X with Intel Tofino ASIC. Since
each pipe of our Tofino 2 switch consists of eight ports, we
allocate 7 of these 14 ports on one pipe, and the remaining
7 ports on another pipe. We then connect the external NF
packet processor on the eighth port of each pipe (i.e., two
ports in total). The testbed is wired with 100 Gbps links. As
our experiments utilize a quarter of the port capacity, we only
exploit a quarter of the available port queues (including the
priority queue dedicated to headers) to ensure fairness. Note
that our testbed represents a prototype implementation based
on our resources, yet one could expand the testbed by (i)
using more pipes and (ii) moving to 400 Gbps links. App. C
depicts a schema of the testbed.

External packet processor. We use two different types of
external NF packet processors devices. Unless specified, the
QUEUE-MEM switch sends the header to an external switch
(i.e., the 32× 100G Tofino switch), which simply returns
the header back on the same incoming port. The external
switch introduces ∼ 3µs of NF latency, similar to FPGA-
based NF processors [61]. We use this mechanism to emulate
a deployment scenario with an external FPGA-based NF
(e.g., Tiara [61]). For evaluating the ability of QUEUE-MEM
in handling advanced NFs, we connect QUEUE-MEM to a
real-world external CPU-based NF processor (more technical
details in Q3), which incurs ∼ 15µs of average latency.

Workload generation. To inject different loads, we use two
generators: (i) the built-in Packet Generator on the 32-port
Tofino and (ii) a server equipped with Intel®Xeon®Gold
6140 CPU @ 2.30 GHz, and Nvidia Mellanox ConnectX-5
NICs [42], also connected to the 32-ports switch. The switch
multicasts the incoming traffic to all the 14 ports. We generate
synthetic traffic using the 32-ports switch and we inject real-
world CAIDA traces [8] from the server using FastClick [3].
To evaluate QUEUE-MEM’s ability to handle real workloads,
we generate traffic using iperf [13] and TRex [9]. All
the experiments are repeated 10 times. We report mean,
minimum, and maximum values for each data point.

Q1 Variable traffic and packet sizes. One key challenge
addressed by QUEUE-MEM is the ability to sustain correct
forwarding with variable traffic patterns (both in terms of
throughput and packet size distribution). We tested the
system using four different traces, three synthetic and two
real-world traces, CAIDA [8] and MAWI [35] (results for
MAWI are similar to CAIDA and shown in App. D). We
consider different traffic patterns to generate varying levels
of congestion within the switch’s buffer. Fig. 6 shows the
performance of QUEUE-MEM in such scenarios using a
forwarder NF. For each scenario, the upper figures depict
the input and output throughput (in Tbps) over the elapsed
time (in seconds). The middle figures show how the buffer
occupancy in bytes (y-axes) varies over the time (x-axis). To
measure the impact of QUEUE-MEM on the buffer occupancy,
we also report the buffer occupancy when QUEUE-MEM is



0.0
0.4
0.8
1.2
1.6

Th
ro

ug
hp

ut
[T

bp
s]

Input Output

0
2
4
6
8

10

Bu
ffe

r O
cc

up
an

cy
[M

B]

Queue-Mem ECMP-Fwd

0 10 20 30 40 50 60
Time [s]

0
20
40
60
80

La
te

nc
y

[μ
s]

P50 P99

(a) Incremental.

0.0
0.4
0.8
1.2
1.6 Input Output

0
2
4
6
8

10 Queue-Mem ECMP-Fwd

0 4 8 12 16 20 24 28 32 36
Time [s]

0
20
40
60
80 P50 P99

(b) Random.

0.0
0.4
0.8
1.2
1.6 Input Output

0
2
4
6
8

10 Queue-Mem ECMP-Fwd

0 4 8 12 16 20 24 28 32 36
Time [s]

0
20
40
60
80 P50 P99

(c) Peaks.

0.0
0.4
0.8
1.2
1.6 Input Output

0
2
4
6
8

10 Queue-Mem ECMP-Fwd

0 2 4 6
Time [s]

0
20
40
60
80 P50 P99

(d) CAIDA.

Figure 6: QUEUE-MEM throughput (upper), buffer occupancy (middle) and latency (lower) with different input traffic patterns.

disabled and traffic is simply traversing the switch according
to ECMP (red line). Finally, the lower figures show how
the average and 99th-percentile latencies (y-axes) change
over time (x-axis). In Fig. 6a, we constantly increase the
input throughput from 200 Gbps to 1.4 Tbps over 27 seconds
(using 1.5 KB packets) and then maintain a steady rate of
1.4 Tbps for other 30 seconds. In Fig. 6b, every 3 seconds, we
randomly change the input throughput on each port differently,
ranging from 10 Gbps to 100 Gbps over 35 seconds. Rates are
extracted from a distribution which privileges higher values.
Fig. 6c shows how QUEUE-MEM reacts to sudden changes in
the rate, going from 100 Gbps to 10 Gbps simultaneously on
each port, and vice versa. Fig. 6d investigates the performance
of QUEUE-MEM using a real-world trace with packets of
different sizes and realistic inter-packet gaps. We replay on
each port of the switch a CAIDA trace containing ∼16 M
flows and an average packet size of 961 B that runs for 6s at
70 Gbps [17]. Overall, QUEUE-MEM efficiently handles input
throughput in every scenario, ensuring almost zero packet
drops (< 0.0001%), demonstrating that the system is able to
support realistic and variable traffic patterns. As for the buffer
occupancy, we first observe that the baseline ECMP forwarder
does not incur a high buffer utilization, since Internet traffic
consists of many small flows and few bursty events [49]
that are sustained well by the buffer memory of the switch
not consumed to store payloads. QUEUE-MEM introduces
an overhead that never exceeds 9 MB (out of the 64 MB
available [25]), potentially leaving enough room to absorb
sudden traffic bursts or incasts without resources contention
even if it would be traversed by more datacenter-like traffic
patterns, which may create incasts or large congestion. We
observed a sudden increase in buffer occupancy around
1.3 Tbps of processed traffic, which reaches a very high
average per-port utilization (i.e., >90%) with some inevitable
additional overheads in the internal packet scheduler, which
does not result in any packet drops. As for latency, we observe
that across all scenarios, the average remains below 30 µs,
which is within the range of typical NF processing times in
datacenters. The latency trend follows the buffer occupancy
trend, suggesting that increases in buffer usage lead to latency

overheads due to the switch’s traffic manager operations.
Similarly, the 99th-percentile latency mirrors the average,
with values consistently staying under 60 µs, which is in line
with previous findings [49].

Q2 QUEUE-MEM is resilient to header drops. To ensure
the resiliency of QUEUE-MEM to header drops, we measured
the throughput of the system while inducing controlled header
drops on the NF. Fig. 7 shows the throughput in Tbps (y-axis)
while varying the percentage of dropped headers on the NF (x-
axis). We inject the same synthetic trace composed of 1.5 KB
packets.The output throughput (purple line) is exactly reduced
by the drop percentage set on the NF, demonstrating that the
recovery mechanism outlined in § 3.3 works as expected.
For instance, with an input throughput of 1.4 Tbps and a
50% header drop rate, the output throughput is 700 Gbps.
For further evaluation that validates the robustness of the
mechanism under adversarial workloads, refer to App. D.

0 10 20 30 40 50
NF Header Drops [%]

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Th
ro

ug
hp

ut
[T

bp
s]

Input Output

Figure 7: Throughput with deliberate header drops.

Q3 >1 Tbps on a single server. We now evaluate the QUEUE-
MEM performance with a software-based packet processor,
implemented using FAJITA [17]. We deploy FAJITA on
a server equipped with 2× Intel®Xeon®Gold 6346 CPU @
3.10 GHz, 256 GB of RAM and 2× Nvidia Mellanox Connect-
X 6 Dx. NICs are connected to separate CPUs, with a FAJITA
instance running on each CPU. Each instance handles traffic
from one of the two pipes of Tofino 2. Fig. 8 depicts the output
throughput (in Mpps and Tbps) over the input throughput
(in Mpps) of two different stateful NF chains: (i) a chain
composed of flow counter, stateful load balancer and per-
flow rate limiter (blue line) and (ii) a chain composed of
load balancer and a header encryptor that computes a 6 B
fingerprint using AES (green line). We inject a synthetic trace



with 1.5 KB packets and a multicast factor of 14 on the 32-
ports switch. The results show that the entire pipeline can
process more than 1 Tbps of input traffic on a single server,
which translates to about ∼ 100 Mpps of processed headers.

0.00
0.24
0.48
0.72
0.96
1.20

Output Throughput
[Tbps]

0 20 40 60 80 100
Input Throughput [Mpps]

0
20
40
60
80

100

Ou
tp

ut
 T

hr
ou

gh
pu

t
[M

pp
s]

FC+LB+RL
LB+AES

Figure 8: Throughput of advanced NF chains.

Q4 QUEUE-MEM avoids impacting the throughput non-
NF-directed traffic. In this experiment, we show that QUEUE-
MEM can be configured to avoid interfering with non-NF-
directed traffic (i.e., traffic that does not require NF processing
and that should be solely routed by the switch). To assess the
impact on non-NF-directed traffic, we connect two additional
machines with 100 Gbps NICs to the testbed, serving as
iperf client/server, generating 14 TCP flows at 7.14 Gbps
(i.e., a total of 100 Gbps from the client). Each TCP flow
is routed through a different input port and forwarded to
the server. For the NF-directed traffic, we replay the same
CAIDA trace (at 70 Gbps) used in Q1 on each port. To route
TCP traffic, we allocate a dedicated queue with a slightly
lower priority than the queue used to receive the processed
headers in QUEUE-MEM, on the same ports used by QUEUE-
MEM to buffer the payloads. Fig. 9 shows how the TCP
traffic reacts when NF-directed traffic is introduced (at the
8-second mark), by monitoring both the output throughput
(in Tbps) and the TCP congestion window (in MB). The TCP
traffic (blue line) remains constant for all the duration of the
experiment. The TCP congestion window initially decreases
when the 1-Tbps NF traffic suddenly appears at the switch,
but quickly recovers to its pre-congestion level. The sum of
the NF (red line) and TCP traffic is equal to the input (green
line), demonstrating that QUEUE-MEM can handle additional
traffic without throughput degradation.

0.0
0.4
0.8
1.2

Th
ro

ug
hp

ut
[T

bp
s] Input
TCP Traffic
NF Traffic

0 4 8 12 16 20
Time [s]

0
1
2
3
4

TC
P

Cw
nd

 S
ize

[M
B]

Figure 9: QUEUE-MEM throughput with NF and TCP traffic.

Q5 QUEUE-MEM does not affect end-to-end latency of
“unsplit” traffic. In this experiment, we wonder whether
buffering payloads on port queues impacts the latency of
traffic that should not be split or is not destined to the NF
server, even if relying on dedicated queues. To address this

question, we measure the latency of traffic returned to the
generator after being processed by QUEUE-MEM through the
external FAJITA packet processor (described in Q3), which
runs a stateful load balancer. Fig. 10 illustrates the end-to-end
traffic latency in microseconds (y-axis) over time in seconds
(x-axis). The injected traffic (green line) is another CAIDA
trace lasting 7 seconds with a throughput of 95 Gbps. We
modify the CAIDA trace so that the 66% of traffic is destined
to the NF, while the remaining 33% is assigned to a specific
IP subnet that serves as “background” traffic that only needs
to be routed. As in Q4, we allocate a dedicated queue to route
such traffic. We observe that the latency of the non-NF traffic,
which only needs to be routed (blue line), remains unaffected
by QUEUE-MEM. Similarly, packets not split by QUEUE-
MEM (i.e., packets with a payload smaller than 64 B) exhibit
a stable latency of approximately 10 µs (orange line), which
correspond to the processing latency introduced by the NF.
The split traffic (red line) shows a median latency that ranges
from 12 to 15µs, implying that QUEUE-MEM’s processing
adds a latency overhead of about 2-5 µs.

0 2 4 6
Time [s]

0
2
4
6
8

10
12
14
16

La
te

nc
y 

[μ
s]

NF Traffic (split)
NF Traffic (unsplit)
non-NF Traffic

Figure 10: Median RTT latency for different types of traffic.

Q6 QUEUE-MEM introduces a negligible amount of
packet reordering. To assess the level of packet reordering
introduced by QUEUE-MEM, we measure two key metrics
specified in RFC 4737 [39]: (i) reordering extent (i.e., the
maximum distance between two packets of the same flow
after being processed by QUEUE-MEM) and (ii) percentage
of out-of-order packets. These measurements are conducted
while injecting 1 Tbps of traffic into the system. To evaluate
QUEUE-MEM under varying traffic patterns, we repeat the
experiments across different values of Spatial Locality Factor
(SLF) metric, i.e., the number of back-to-back packets per
flow [16], ranging from 1 to 20. For context, typical
datacenter traffic exhibits an average SLF of around 8 [16].
For our analysis, we insert a unique identifier when generating
each packet and capture the traffic after being processed by
QUEUE-MEM. We then analyze 15 million packets from the
pcap file to compute the metrics. The results are presented
in Fig. 11. Specifically, Fig. 11a shows how the reordering
extent (y-axis) varies with the SLF (x-axis). As expected,
a larger SLF, meaning more back-to-back packets from the
same flow, leads to greater reordering extent. Nonetheless,
even at SLF = 20, QUEUE-MEM maintains a reordering
extent of around 10, which is comparable to other state-of-
the-art NF processors [60]. Fig. 11b presents the percentage
of out-of-order packets (y-axis) as a function of SLF (x-axis).
The trend is consistent with the reordering extent: a higher



SLF results in a slightly higher percentage of reordering.
However, across all scenarios, packet reordering remains
minimal, with the worst case still under 0.01%.

1 2 4 8 16 20
Spatial Locality Factor

0
2
4
6
8

10
12

Av
er

ag
e

Re
or

de
rin

g 
Ex

te
nt

(a) Reordering Extent.

1 2 4 8 16 20

Spatial Locality Factor

0.000
0.002
0.004
0.006
0.008
0.010

Re
or

de
re

d
Pa

ck
et

 R
at

io
 [%

]
(b) Reordering Percentage.

Figure 11: QUEUE-MEM packet reordering analysis.

Q7 QUEUE-MEM sustains stable TCP performance under
real workloads. To demonstrate the capability of QUEUE-
MEM in handling real-world workloads, we conduct two
additional experiments using actual TCP traffic. In both
experiments, traffic is processed by QUEUE-MEM’s switch,
which sends the header to an external FAJITA NF running
a flow counter, before recombining it with the payload and
forwarding it to the server. In the first experiment, we use
TRex [9] to inject two distinct workloads: (i) user traffic
composed of HTTP POST requests, with 5 M connections
at 80 Gbps and (ii) TCP-based All-Reduce collective job at
75 Gbps, representative of ML workloads (the trace is derived
from the MVAPICH benchmark [56]). Since we do not
observe any throughput degradation compared to a baseline
forwarder that does not split packets, we focus on TCP
retransmissions. Fig. 12a shows how the percentage of TCP
retransmissions (y-axis) varies over time (x-axis). The results
indicate that QUEUE-MEM manages the TCP connections
with an acceptable level of packet reordering, maintaining
retransmission rates around 0.4% for HTTP traffic (blue line)
and approximately 0.8% for the All-Reduce workload (red
line). In the second experiment, we evaluate QUEUE-MEM
under standard Linux TCP stack. We use iperf [13] to inject
100 Gbps of traffic into QUEUE-MEM for 10 s, using 4 KB
packets to emulate a typical datacenter MTU. Fig. 12b shows
the percentage of TCP retransmissions (y-axis) over time (x-
axis). The results demonstrate that QUEUE-MEM sustains
stable TCP connections while maintaining retransmissions
consistently around 0.2% throughout the experiment.

0 5 10 15 20 25
Time [s]

0.0
0.2
0.4
0.6
0.8
1.0

TC
P 

Re
tra

ns
. [

%
]

HTTP All-Reduce

(a) TRex.

0 1 2 3 4 5 6 7 8 9 10
Time [s]

0.00

0.25

0.50

(b) iperf.

Figure 12: QUEUE-MEM handling real workloads.

6 Related Work
We now discuss any related work not mentioned in § 2.

Dedicated external devices. Most systems send the entire
packet to the NF processor [12,20,29,34,44,47,64]. Contrary,
QUEUE-MEM only transmits headers, minimizing the amount
of resources needed to run complex functions at Tbps speed.

Network functions directly on ASIC. Supporting network
functions entirely in the data plane of an ASIC switch
would result in high throughput, low-latency, and low-energy
consumption. P4QRS [60] introduces a technique that utilizes
switch queues to optimize packet processing tasks that require
multiple computation rounds through recirculation, allowing
stateless and complex network functions to be implemented
directly on the ASIC. Several existing approaches, such as
SilkRoad [37], Cheetah [4] SwiSh [62], Elastic-Sketch [59]
and Sketchovsky [40] propose to store the entire state required
to operate a specific NF entirely on the memory available on
an ASIC switch. However, the amount of memory available
to store per-flow state on existing high-speed ASIC chips is
constrained and may not be sufficient for NF applications that
handle large amounts of flows. Moreover, realizing complex
logic directly on ASIC is a challenging task. Hence, we
believe that for complex tasks the best choice is to exploit the
high-throughput of ASIC switches, while delegating complex
tasks to a dedicated external processors (e.g., CPU, FPGA).

Disaggregated processing pipelines. Other works propose
to disaggregate the processing pipeline to overcome the
constraints imposed by ASIC switches or to obtain better
performance by combining specialized hardware accelerators.
TurboSwitch [48] buffers payloads via recirculation or
multicast, but both cause unnecessary congestion. TEA [30] is
the first framework to implement NFs using a programmable
switch and leveraging additional RDMA-accessible memory
to store per-flow state. Gallium [63] enables offloading a part
of the NF processing on the switch, but complex processing
still needs to be executed on the NF servers. ExoPlane [31]
and Flightplan [55] integrate programmable switches with
other dedicated programmable network hardware to deploy
stateful NFs that require an amount of memory resources
that is not available on ASIC chips. These approaches are
orthogonal to QUEUE-MEM. If some network functions
can be offloaded to ASIC switches, e.g., to process packets
belonging to heavy-hitter flows, the same approach could be
deployed alongside QUEUE-MEM.

7 Conclusion
In this work, we observed that the payload-storage location
severely impacts the energy consumption of an NF deploy-
ment. We introduced QUEUE-MEM, an energy-efficient
system that leverages the existing packet buffer memory of
ASIC switches to store packet payloads in a programmatic
manner. QUEUE-MEM is the first ever advanced NF system
that processes >1 Tbps of traffic, relying solely on a switch
and a single CPU-based server. Our work spurs a question on
how complex would it be for today’s switch manufacturers to
expose an API for controlling the forwarding of packets in a
highly programmable manner, e.g., dequeueing single packets
using an identifier. Our work demonstrates the massive energy
and performance gains achievable by such approaches.



Acknowledgments

We would like to thank our shepherd Boris Pismenny and
the anonymous reviewers for their insightful comments and
suggestions on this paper. This work has been partially
supported by Vinnova (the Sweden’s Innovation Agency), the
Swedish Research Council (agreement No. 2021-04212), and
KTH Digital Futures. This work has been partially supported
by Knut and Alice Wallenberg Foundation (Wallenberg
Scholar Grant for Prof. Dejan Kostić). This work has
been partially supported by PRIN Project no. 2022TS4Y3N –
EXPAND.

References

[1] P. Adrian, D. Dragos, H. Mark, N. Georgios,
L. Jeongkeun, and R. Costin. Implementing packet
trimming support in hardware, 2022.

[2] APS Networks. APS2140D Datasheet, 2022.
https://www.aps-networks.com/wp-content/
uploads/2022/06/APS2140D-Datasheet.pdf.

[3] T. Barbette, C. Soldani, and L. Mathy. Fast Userspace
Packet Processing. In Proceedings of the Eleventh
ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS ’15, pages 5–16,
Washington, DC, USA, 2015. IEEE Computer Society.

[4] T. Barbette, E. Wu, D. Kostić, G. Q. Maguire,
P. Papadimitratos, and M. Chiesa. Cheetah: A High-
Speed Programmable Load-Balancer Framework With
Guaranteed Per-Connection-Consistency. IEEE/ACM
Transactions on Networking, pages 1–14, 2021.

[5] Broadcom. Broadcom Trident 3 Platform Performance
Analysis, 2019. https://docs.broadcom.com/doc/
12395356.

[6] Broadcom. Broadcom Tomahawk 5: Powering
the World’s Highest Performance AI/ML Clusters,
2022. https://www.youtube.com/watch?v=
A30nk8_e1WA&t=64s.

[7] T. Caiazzi, M. Scazzariello, and M. Chiesa. Millions
of low-latency state insertions on asic switches. Proc.
ACM Netw., 1(CoNEXT3), nov 2023.

[8] CAIDA. The CAIDA Anonymized Internet
Traces Dataset (April 2008 - January 2019) -
CAIDA, 2022. https://www.caida.org/catalog/
datasets/passive_dataset/.

[9] Cisco. TRex - Realistic Traffic Generator, 2025. https:
//trex-tgn.cisco.com.

[10] DigiKey. IBM 04368CBLBC-28 SRAM Chip, 2024.
https://www.digikey.com/en/products/detail/
rochester-electronics-llc/04368CBLBC-
28/12593844.

[11] D. Dutt. BGP in the Data Center. O’Reilly Media,
2017. page 11, paragraph “Connectivity to the External
World”.

[12] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Maglev:
A Fast and Reliable Software Network Load Balancer.
In Proceedings of the 13th Usenix Conference
on Networked Systems Design and Implementation,
NSDI’16, page 523–535, USA, 2016. USENIX
Association.

[13] ESnet: Energy Sciences Network. iperf3, 2024. https:
//github.com/esnet/iperf.

[14] Facebook. Katran Load Balancer, 2021.
https://engineering.fb.com/2018/05/22/open-
source/open-sourcing-katran-a-scalable-
network-load-balancer/.

[15] A. Farshin, A. Roozbeh, G. Q. Maguire, and D. Kostić.
Make the most out of last level cache in intel processors.
In Proceedings of the Fourteenth EuroSys Conference
2019, EuroSys ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[16] H. Ghasemirahni, T. Barbette, G. P. Katsikas,
A. Farshin, A. Roozbeh, M. Girondi, M. Chiesa, G. Q.
Maguire Jr., and D. Kostić. Packet Order Matters!
Improving Application Performance by Deliberately
Delaying Packets. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 807–827, Renton, WA, Apr. 2022. USENIX
Association.

[17] H. Ghasemirahni, A. Farshin, M. Scazzariello, G. Q.
Maguire, D. Kostić, and M. Chiesa. Fajita: Stateful
packet processing at 100 million pps. Proc. ACM Netw.,
2(CoNEXT3), aug 2024.

[18] S. Goswami, N. Kodirov, C. Mustard, I. Beschastnikh,
and M. Seltzer. Parking Packet Payload with P4, page
274–281. Association for Computing Machinery, New
York, NY, USA, 2020.

[19] V. Gurevich and A. Fingerhut. P4_16
Programming for Intel Tofino using Intel P4
Studio, 2021. https://opennetworking.org/wp-
content/uploads/2021/05/2021-P4-WS-
Vladimir-Gurevich-Slides.pdf.

https://www.aps-networks.com/wp-content/uploads/2022/06/APS2140D-Datasheet.pdf
https://www.aps-networks.com/wp-content/uploads/2022/06/APS2140D-Datasheet.pdf
https://docs.broadcom.com/doc/12395356
https://docs.broadcom.com/doc/12395356
https://www.youtube.com/watch?v=A30nk8_e1WA&t=64s
https://www.youtube.com/watch?v=A30nk8_e1WA&t=64s
https://www.caida.org/catalog/datasets/passive_dataset/
https://www.caida.org/catalog/datasets/passive_dataset/
https://trex-tgn.cisco.com
https://trex-tgn.cisco.com
https://www.digikey.com/en/products/detail/rochester-electronics-llc/04368CBLBC-28/12593844
https://www.digikey.com/en/products/detail/rochester-electronics-llc/04368CBLBC-28/12593844
https://www.digikey.com/en/products/detail/rochester-electronics-llc/04368CBLBC-28/12593844
https://github.com/esnet/iperf
https://github.com/esnet/iperf
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf


[20] S. Han, K. Jang, K. Park, and S. Moon. PacketShader:
A GPU-Accelerated Software Router. In Proceedings of
the ACM SIGCOMM 2010 Conference, SIGCOMM ’10,
page 195–206, New York, NY, USA, 2010. Association
for Computing Machinery.

[21] IEEE. IEEE 802.1Qbb or PFC, "Priority-based
Flow Control", 2011. http://www.ieee802.org/1/
pages/802.1bb.html.

[22] Intel. P416 Intel Tofino Native Architecture – Public
Version, 2021. https://raw.githubusercontent.
com/barefootnetworks/Open-Tofino/master/
PUBLIC_Tofino-Native-Arch.pdf.

[23] Intel. Tofino®Series, 2022. https://www.intel.
com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-
series.html.

[24] Intel. Tofino®2, 2023. https://www.intel.
com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-2-
series.html.

[25] Intel. Tofino®2 12.8 Tbps, 20 stage, 4 pipelines,
2023. https://www.intel.com/content/www/us/
en/products/sku/218648/intel-tofino-2-12-
8-tbps-20-stage-4-pipelines/specifications.
html.

[26] R. Jacob, J. Lim, and L. Vanbever. Does rate adaptation
at daily timescales make sense? In Proceedings of
the 2nd Workshop on Sustainable Computer Systems,
HotCarbon ’23, New York, NY, USA, 2023. Association
for Computing Machinery.

[27] Jim Warner. Tomahawk-3, 2019. https://people.
ucsc.edu/~warner/Bufs/tomahawk-3.html.

[28] L.-E. Jonsson, K. Sandlund, and G. Pelletier. The
RObust Header Compression (ROHC) Framework. RFC
5795, Mar. 2010.

[29] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and
G. Q. Maguire Jr. Metron: NFV Service Chains at
the True Speed of the Underlying Hardware. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 171–186, Renton,
WA, 2018. USENIX Association.

[30] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar,
and S. Seshan. TEA: Enabling State-Intensive
Network Functions on Programmable Switches. In
Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM

’20, page 90–106, New York, NY, USA, 2020.
Association for Computing Machinery.

[31] D. Kim, V. Sekar, and S. Seshan. ExoPlane:
An operating system for On-Rack switch resource
augmentation. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
23), pages 1257–1272, Boston, MA, Apr. 2023.
USENIX Association.

[32] J. Lee. Advanced Congestion & Flow
Control with Programmable Switches, 2020.
https://opennetworking.org/wp-content/
uploads/2020/04/JK-Lee-Slide-Deck.pdf.

[33] T. Lévai, F. Németh, B. Raghavan, and G. Retvari.
Batchy: Batch-scheduling Data Flow Graphs with
Service-level Objectives. In 17th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 20), pages 633–649, Santa Clara, CA, Feb. 2020.
USENIX Association.

[34] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,
Y. Xiong, P. Cheng, and E. Chen. ClickNP: Highly
Flexible and High Performance Network Processing
with Reconfigurable Hardware. In Proceedings of the
2016 ACM SIGCOMM Conference, SIGCOMM ’16,
page 1–14, New York, NY, USA, 2016. Association for
Computing Machinery.

[35] MAWI Working Group. MAWI Working
Group Trace Info (Apr 14th, 2025), 2025.
https://mawi.wide.ad.jp/mawi/samplepoint-
F/2025/202504141400.html.

[36] Mellanox. SN3000 Series, 2020. https:
//www.exclusive-networks.com/nl/wp-
content/uploads/sites/21/2021/02/BR_SN3000_
Series.pdf.

[37] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad:
Making Stateful Layer-4 Load Balancing Fast and
Cheap Using Switching ASICs. In Proceedings of
the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’17, page 15–28,
New York, NY, USA, 2017. Association for Computing
Machinery.

[38] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten,
F. De Turck, and R. Boutaba. Network
Function Virtualization: State-of-the-Art and Research
Challenges. IEEE Communications Surveys Tutorials,
18(1):236–262, 2016.

[39] A. Morton, G. Ramachandran, S. Shalunov, L. Ciavat-
tone, and J. Perser. Packet Reordering Metrics. RFC
4737, Nov. 2006.

http://www.ieee802.org/1/pages/802.1bb.html
http://www.ieee802.org/1/pages/802.1bb.html
https://raw.githubusercontent.com/barefootnetworks/Open-Tofino/master/PUBLIC_Tofino-Native-Arch.pdf
https://raw.githubusercontent.com/barefootnetworks/Open-Tofino/master/PUBLIC_Tofino-Native-Arch.pdf
https://raw.githubusercontent.com/barefootnetworks/Open-Tofino/master/PUBLIC_Tofino-Native-Arch.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://people.ucsc.edu/~warner/Bufs/tomahawk-3.html
https://people.ucsc.edu/~warner/Bufs/tomahawk-3.html
https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.pdf
https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.pdf
https://mawi.wide.ad.jp/mawi/samplepoint-F/2025/202504141400.html
https://mawi.wide.ad.jp/mawi/samplepoint-F/2025/202504141400.html
https://www.exclusive-networks.com/nl/wp-content/uploads/sites/21/2021/02/BR_SN3000_Series.pdf
https://www.exclusive-networks.com/nl/wp-content/uploads/sites/21/2021/02/BR_SN3000_Series.pdf
https://www.exclusive-networks.com/nl/wp-content/uploads/sites/21/2021/02/BR_SN3000_Series.pdf
https://www.exclusive-networks.com/nl/wp-content/uploads/sites/21/2021/02/BR_SN3000_Series.pdf


[40] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste.
Sketchovsky: Enabling ensembles of sketches on
programmable switches. In 20th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 23), pages 1273–1292, Boston, MA, Apr. 2023.
USENIX Association.

[41] Nvidia. ConnectX-7 Specifications, 2023.
https://docs.nvidia.com/networking/
display/connectx7vpi/specifications#src-
2572915597_Specifications-MCX715105AS-
WEATSpecifications.

[42] NVIDIA Networking. NVIDIA Mellanox ConnectX-5
adapters, 2021. https://www.nvidia.com/en-us/
networking/ethernet/connectx-5/.

[43] V. Olteanu, H. Eran, D. Dumitrescu, A. Popa, C. Baciu,
M. Silberstein, G. Nikolaidis, M. Handley, and C. Raiciu.
An edge-queued datagram service for all datacenter
traffic. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
761–777, Renton, WA, Apr. 2022. USENIX
Association.

[44] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg,
D. A. Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu,
C. Kim, and N. Karri. Ananta: Cloud Scale Load
Balancing. SIGCOMM Comput. Commun. Rev.,
43(4):207–218, aug 2013.

[45] A. Perrig, P. Szalachowski, R. M. Reischuk, and
L. Chuat. SCION: A Secure Internet Architecture.
Springer Publishing Company, Incorporated, 1st edition,
2017.

[46] B. Pismenny, L. Liss, A. Morrison, and D. Tsafrir. The
Benefits of General-Purpose On-NIC Memory. In
Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’22), pages 1–18.
Association for Computing Machinery, New York, NY,
USA, Feb. 2022.

[47] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone,
M. Spaziani, V. Bruschi, D. Sanvito, G. Siracusano,
A. Capone, M. Honda, F. Huici, and G. Siracusano.
FlowBlaze: Stateful Packet Processing in Hardware. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 531–548, Boston,
MA, Feb. 2019. USENIX Association.

[48] M. Scazzariello, T. Caiazzi, and M. Chiesa. Deliberately
congesting a switch for better network functions
performance. In 2024 IEEE 32nd International
Conference on Network Protocols (ICNP), pages 1–6,
2024.

[49] M. Scazzariello, T. Caiazzi, H. Ghasemirahni,
T. Barbette, D. Kostić, and M. Chiesa. A High-
Speed stateful packet processing approach for tbps
programmable switches. In 20th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 23), pages 1237–1255, Boston, MA, Apr. 2023.
USENIX Association.

[50] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy.
Approximating fair queueing on reconfigurable switches.
In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), pages 1–16,
Renton, WA, Apr. 2018. USENIX Association.

[51] N. K. Sharma, C. Zhao, M. Liu, P. G. Kannan, C. Kim,
A. Krishnamurthy, and A. Sivaraman. Programmable
calendar queues for high-speed packet scheduling. In
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 685–699, Santa
Clara, CA, Feb. 2020. USENIX Association.

[52] N. K. Sharma, C. Zhao, M. Liu, P. G. Kannan, C. Kim,
A. Krishnamurthy, and A. Sivaraman. Programmable
calendar queues for high-speed packet scheduling. In
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 685–699, Santa
Clara, CA, Feb. 2020. USENIX Association.

[53] Smart-me. Intelligent Plug Datasheet, 2024.
https://static.digitecgalaxus.ch/Files/2/3/
6/8/5/2/5/smart-me_Datenblatt_ch.pdf.

[54] C. H. Song, X. Z. Khooi, R. Joshi, I. Choi, J. Li, and
M. C. Chan. Network load balancing with in-network
reordering support for rdma. In Proceedings of the ACM
SIGCOMM 2023 Conference, ACM SIGCOMM ’23,
page 816–831, New York, NY, USA, 2023. Association
for Computing Machinery.

[55] N. Sultana, J. Sonchack, H. Giesen, I. Pedisich, Z. Han,
N. Shyamkumar, S. Burad, A. DeHon, and B. T. Loo.
Flightplan: Dataplane disaggregation and placement
for p4 programs. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 571–592. USENIX Association, Apr. 2021.

[56] The Ohio State University. MVAPICH: MPI over
InfiniBand, Omni-Path, Ethernet/iWARP, RoCE, and
Slingshot, 2025. https://mvapich.cse.ohio-
state.edu/benchmarks/.

[57] Xilinx. Alveo U50 Data Center Accelerator Card Data
Sheet, 2020. https://www.xilinx.com/content/
dam/xilinx/support/documents/data_sheets/
ds965-u50.pdf.

https://docs.nvidia.com/networking/display/connectx7vpi/specifications#src-2572915597_Specifications-MCX715105AS-WEATSpecifications
https://docs.nvidia.com/networking/display/connectx7vpi/specifications#src-2572915597_Specifications-MCX715105AS-WEATSpecifications
https://docs.nvidia.com/networking/display/connectx7vpi/specifications#src-2572915597_Specifications-MCX715105AS-WEATSpecifications
https://docs.nvidia.com/networking/display/connectx7vpi/specifications#src-2572915597_Specifications-MCX715105AS-WEATSpecifications
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://static.digitecgalaxus.ch/Files/2/3/6/8/5/2/5/smart-me_Datenblatt_ch.pdf
https://static.digitecgalaxus.ch/Files/2/3/6/8/5/2/5/smart-me_Datenblatt_ch.pdf
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds965-u50.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds965-u50.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds965-u50.pdf


[58] M. Yang, A. Baban, V. Kugel, J. Libby, S. Mackie,
S. S. R. Kananda, C.-H. Wu, and M. Ghobadi. Using
trio: juniper networks’ programmable chipset - for
emerging in-network applications. In Proceedings of
the ACM SIGCOMM 2022 Conference, SIGCOMM ’22,
page 633–648, New York, NY, USA, 2022. Association
for Computing Machinery.

[59] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou,
R. Miao, X. Li, and S. Uhlig. Elastic sketch: Adaptive
and fast network-wide measurements. In Proceedings
of the 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’18, page
561–575, New York, NY, USA, 2018. Association for
Computing Machinery.

[60] Y. Yoshinaka, Y. Koizumi, J. Takemasa, and
T. Hasegawa. High-throughput stateless-but-complex
packet processing within a tbps programmable switch.
In 2024 IEEE 32nd International Conference on
Network Protocols (ICNP), pages 1–12, 2024.

[61] C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han,
N. Chen, L. Wan, L. Liu, Z. Ding, X. Geng, T. Feng,
F. Ning, K. Chen, and C. Guo. Tiara: A Scalable
and Efficient Hardware Acceleration Architecture
for Stateful Layer-4 Load Balancing. In 19th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), Renton, WA, apr 2022.
USENIX Association.

[62] L. Zeno, D. R. K. Ports, J. Nelson, D. Kim, S. Landau-
Feibish, I. Keidar, A. Rinberg, A. Rashelbach, I. De-
Paula, and M. Silberstein. SwiSh: Distributed shared
state abstractions for programmable switches. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 171–191, Renton,
WA, Apr. 2022. USENIX Association.

[63] K. Zhang, D. Zhuo, and A. Krishnamurthy. Gal-
lium: Automated software middlebox offloading to
programmable switches. In Proceedings of the Annual
Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’20, page 283–295, New York, NY,
USA, 2020. Association for Computing Machinery.

[64] Z. Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar, and
J. Sherry. Achieving 100Gbps Intrusion Prevention
on a Single Server. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 1083–1100. USENIX Association, Nov.
2020.

[65] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia,

and M. Zhang. Congestion control for large-scale
rdma deployments. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, page 523–536, New
York, NY, USA, 2015. Association for Computing
Machinery.

A Methodology for the Power Usage Analysis

We now outline the approach we used for calculating the
power usage analysis presented in § 2. We derive our
calculations from the data provided in Table 1, describing
the formulas we use to compute the power usage of each
analyzed architecture (see Fig. 3).

We refer to the ConnectX-7 hardware datasheet for RNIC
energy consumption [41], in the following rnic. Since RNICs
do not implement load-dependent power-saving mechanisms,
we assume a constant power consumption and do not scale it
with the Mpps. For servers, instead, we consider the optimal
case where the CPU power consumption is proportional
to the throughput in Mpps. We conducted three distinct
measurements, each lasting 30 minutes: (i) idle power usage
(in the next, serveridle); (ii) power usage while processing
100 Gbps of traffic with 1.5 KB packets (corresponding to
roughly 8 Mpps) using a load-balancer NF implemented
with FastClick [3] (in the next, server1.5KB

NF ); (iii) power
usage while processing 100 Gbps of traffic with 64 B packets
(corresponding to roughly 142 Mpps) using the same load-
balancer NF (in the next, server64B

NF ). Finally, we subtract
rnic from each of these measurements to isolate the server
contribution excluding RNIC consumption.

We can now compute the packet processor’s additional
consumption when processing full-sized 1.5 KB packets:

NF1.5KB
extra =

server1.5KB
NF − serveridle

Mpps100Gbps
1.5KB

(1)

We also account for the additional NF power consumption
when processing 64 B packets, which represents the case of
handling only packet headers:

NF64B
extra =

server64B
NF − serveridle

Mpps100Gbps
64B

(2)

In the following, we describe how we obtained the formula
for each system depicted in Fig. 3. As discussed in § 2, we
assume that all link capacities are set at 100 Gbps with input
packets’ size of 1.5 KB.

Baseline. To process traffic, a traditional packet processing
deployment would require a dedicated NF server for each
input port of the switch, which translates into the following:

Baselinepower = ASICpower +(NFpower ·nNF) (3)



The first term represents the programmable ASIC consump-
tion varying the number of input ports (inports) and their
input throughput in Mpps (int put), assuming uniform traffic
distribution across all ports:

ASICpower = ASICbase +((ASICextra · int put) ·ASICports) (4)

The values of ASICbase and ASICextra are taken from Table 1.
This value accounts both input and NF ports:

ASICports = inports +nNF (5)

The second term considers the additional consumption of the
NF servers, with one of them allocated for each input port:

NFpower = serveridle +(NF1.5KB
extra · int put)+ rnic (6)

nNF = inports (7)

PayloadPark. As for the baseline, we have that the Payload-
Park power consumption is composed of two terms:

PayloadParkpower = ASICpower +(NFpower ·nNF) (8)

Where ASICpower is computed as in (4). PayloadPark, by
storing 160 B of payload on the switch, reduces the value of
nNF since it increases the maximum throughput achievable
by each NF server. We compute the number of NF servers as:

nNF =

⌈
int put · inports

Mpps100Gbps
1.34KB

⌉
(9)

Where Mpps100Gbps
1.34KB is the number of millions of packets per

second in 100 Gbps, considering 1.34 KB packets.
We calculate the NF power consumption assuming that

each NF server processes Mpps100Gbps
1.34KB :

NFpower = serveridle+(NF1.5KB
extra ·Mpps100Gbps

1.34KB )+rnic (10)

nicmem. nicmem does not perform packet splitting on the
switch, and full-size packets are sent to each NF server. But,
the payloads are stored in NIC memory while only the headers
are forwarded to the packet processor, thereby reducing CPU
load. Prior research has demonstrated that a single CPU
socket can handle up to ∼178 Mpps of 64 B packets [17].
Hence, increasing the number of NICs on the same server
could enhance overall power efficiency. Based on this insight,
we consider utilizing additional NIC slots within a single
server. The power usage is computed as:

nicmempower = ASICpower +(NFpower ·nNF) (11)

Where ASICpower is computed as in (4) and ASICports is the
same as (5). Since we consider that each NF server can utilize
nnic NICs, the number of NF servers is computed as:

nNF =

⌈
inports

nnic

⌉
(12)

We can now compute NFpower as:

NFpower = serveridle +((NF64B
extra · int put) ·nnic)+(rnic ·nnic)

(13)
We use NF64B

extra to represent the CPU overhead, as nicmem
processes only packet headers on the CPU.

Tiara. Tiara is a powerful load balancer system that reroutes
packets from a switch to FPGAs (for the fast path) and
x86 servers (for the slow path) performing per-packet load
balancer calculations. In their evaluation, authors deploy
Tiara using an ASIC switch, 10 FPGAs and one CPU. So, the
formula for the power consumption is the following:

Tiarapower = ASICpower +(serverpower ·nserver) +

(FPGApower ·nFPGA)
(14)

The total switch consumption is:

ASICpower = ASICbase +

(ASICextra · ((inports · int put) +

(nFPGA · in90%
t put )+(nserver · in10%

t put )))

(15)

Since the majority of input traffic is processed by the fast
path, we consider that FPGAs process 90% of the input traffic
(in90%

t put ), while CPUs process 10% of the input traffic (in10%
t put ).

For the same reason, the serverpower is computed by
considering that the CPU processes in10%

t put :

serverpower = serveridle +(NF1.5KB
extra · in10%

t put )+ rnic (16)

The value of FPGApower is taken from Table 1.

Ribosome. Ribosome splits packets on the switch, but it needs
several RDMA servers to store payloads. Therefore, the total
power usage is computed as:

Ribosomepower = ASICpower +(NFpower ·nNF) +

(RDMApower ·nRDMA)
(17)

Since only one NF server is needed to process 1 Tbps of input
traffic, we consider nNF = 1 in our analysis. Moreover, as
stated in the paper [49], each RDMA server can process up
to 75 Gbps of payloads. Therefore, considering that the total
throughput to be managed by the RDMA servers is:

t putRDMA =
(int put · inports) · (1500 ·8)

1024
(18)

The number of RDMA servers is computed as:

nRDMA =
⌈ t putRDMA

75

⌉
(19)

Aside the input ports and the one directed to the NF, Ribosome
wastes an additional port for each RDMA server. The final
switch consumption is therefore:

ASICpower = ASICbase +

(ASICextra · ((inports +nRDMA +nNF) · int put))
(20)



Note that, for the ASIC power consumption of the NF server
port on the switch, we chose to consider it as nNF · int put
rather than nNF · int put · inports, since the power consumption
of a switch, being designed to operate at line rate, should not
be heavily influenced by the number of processed pps.

The power usage of Ribosome on the NF server is:

NFpower = serveridle +NF64B
extra · (int put · inports)+ rnic (21)

For RDMA servers contribution, we debated whether to
include the idle CPU power of RDMA servers in Ribosome’s
power calculations, considering Ribosome assumes these
servers are always available to run customer applications.
On the other hand, any workload consolidation scheme would
have to keep them running, so we assume there is a 50%
chance that each Ribosome server is kept running specifically
to support Ribosome. Additionally, we assume that Ribosome
operates at maximum speed on NICs, optimizing resource
utilization but limiting the available bandwidth for customers’
applications. Thus, we take 1/2 of idle server power
into account for power calculations even though Ribosome
consumes the entire bandwidth on the NIC. Therefore, we
only consider half of the idle CPU power plus the additional
consumption induced by the RNIC:

RDMApower =
serveridle

2
+ rnic (22)

QUEUE-MEM. QUEUE-MEM buffers payloads in the switch
queues, without requiring any additional dedicated device
aside from the NF processor:

QueueMempower = ASICpower +(NFpower ·nNF) (23)

As in Ribosome, one NF server is enough to process 1 Tbps
of input traffic, so in the analysis we consider nNF = 1 and
NFpower is computed as in (21). By not utilizing external
dedicated devices, QUEUE-MEM saves switch’s ports, thus
reducing the total power consumption:

ASICpower = ASICbase +(ASICextra · ((inports +nNF) · int put))
(24)

B Deployment as an Exit Point-of-Delivery

Fig. 13 shows how QUEUE-MEM can be deployed inside the
Internet-facing Point-of-Delivery (PoD) [11] of a datacenter
to enhance the performance of a variety of NFs including
security firewalls, proxies, NATs, and more. This approach
significantly reduces the number of dedicated NF servers
required to manage inbound/outbound fabric traffic.

C Experimental Setup

Figure 14 depicts our testbed described in Sec. 5. We
utilize a multicast switch right before the QUEUE-MEM to

Spine

Aggregate

Leaf

Internet Server

NFNF QM

Figure 13: Example of QUEUE-MEM as an exit PoD.

increase the offered load by 14× as we need to examine the
performance of QUEUE-MEM at high rates (i.e., 1.4 Tbps in
our experiments). Also, note that there are two 100 Gbps links
connected to the NF server with two different NUMA nodes
to achieve the desired rate in the testbed.

Traffic 
Generator

Multicast
Switch

QueueMem
(Tofino 2)

NF Server

…

100 Gigabit Ethernet

1
4

x

Figure 14: QUEUE-MEM testbed.

D Additional Evaluation

QUEUE-MEM scales linearly w.r.t. the input throughput.
Fig. 15 shows the output throughput (in Mpps and Tbps)
and the input throughput (in Mpps) of QUEUE-MEM while
sending 1.5 KB packets to a forwarder NF. We compare
QUEUE-MEM with two systems, a baseline that sends the
full-size packet (without splitting) to the external NF and a
PayloadPark-like system that can only store 160 B of each
payload in the switch memory. As expected, the baseline is
capped by the NIC bandwidth and cannot go beyond 100 Gbps.
The PayloadPark-like system produces only a small increment
in the output throughput, reaching about 115 Gbps. Instead,
QUEUE-MEM is able to sustain the 1.4 Tbps of input traffic,
while sending about 76 Gbps of headers to the NF, and
achieving zero packet loss. This experiment demonstrates
that QUEUE-MEM can successfully process >1 Tbps of input
traffic without using any external resource to store payloads.

0.00
0.24
0.48
0.72
0.96
1.20
1.44
1.68

Output Throughput
[Tbps]

0 20 40 60 80 100 120
Input Throughput [Mpps]

0
20
40
60
80

100
120
140

Ou
tp

ut
 T

hr
ou

gh
pu

t
[M

pp
s]

Queue-Mem (Header-only)
Baseline (Header+Payload)
PayloadPark-like

Figure 15: Forwarding NF throughput with 1.5 KB packets.



0.0

0.4

0.8

1.2

1.6

Th
ro

ug
hp

ut
[T

bp
s]

Input Output

0 10 20 30 40 50 60
Time [s]

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Bu
ffe

r O
cc

up
an

cy
[M

B]

(a) Incremental.

0.0

0.4

0.8

1.2

1.6 Input Output

0 4 8 12 16 20 24 28 32 36
Time [s]

0.0
0.5
1.0
1.5
2.0
2.5
3.0

(b) Random.

0.0

0.4

0.8

1.2

1.6 Input Output

0 4 8 12 16 20 24 28 32 36
Time [s]

0.0
0.5
1.0
1.5
2.0
2.5
3.0

(c) Peaks.

0.0

0.4

0.8

1.2

1.6 Input Output

0 2 4 6
Time [s]

0.0
0.5
1.0
1.5
2.0
2.5
3.0

(d) CAIDA trace.

0.0

0.4

0.8

1.2

1.6 Input Output

0 2 4 6
Time [s]

0.0
0.5
1.0
1.5
2.0
2.5
3.0

(e) MAWI trace.

Figure 16: Throughput (upper) and buffer occupancy (lower) with different input traffic patterns and 30% header drops.

One can argue that Ribosome could achieve the same level
of performance. But, to sustain 1.4 Tbps of traffic, Ribosome
would need at least 19 RDMA servers (each RDMA server
can process up to 75 Gbps of payloads [49]), requiring a more
complex deployment, end-host modifications on the network
stack, strong assumption on the availability of resources, and
a higher power usage compared to QUEUE-MEM.

QUEUE-MEM is able to handle drops with different
traffic patterns. To ensure that QUEUE-MEM’s recovery
mechanism correctly works with different traffic patterns,
we performed an experiment running the same workloads
of Q1 and inducing a controlled 30% NF header drop in each
scenario. Fig. 16 depicts the results. The upper figures show
the input and output throughput (in Tbps) over the elapsed
time (in seconds), highlighting that the recovery mechanism
is effective in all the scenarios. Indeed, the output throughput
of QUEUE-MEM is inline with the induced drop of 30%. The
overall buffer occupancy (lower figures) is lower w.r.t. Q1,
since the switch receives back less packets from the NF.

MAWI trace. To further evaluate QUEUE-MEM with real-
world traffic, we repeat the experiment from Q1 using a
MAWI trace. This trace contains approximately 14 million
packets with an average size of 1.4 KB and spans 6 seconds at
70 Gbps. As shown in Fig. 17, the results are consistent with
those obtained using the CAIDA trace, demonstrating similar
trends in throughput (top figure), buffer occupancy (middle
figure), and latency (bottom figure).

Even dropping a packet for each batch, QUEUE-MEM
does not suffer any additional throughput degradation. As
further proof of the robustness of the QUEUE-MEM algorithm,
we measured the throughput in the same scenarios of Q1
and the MAWI trace, while deliberately dropping the last
packet of batches on the NF. In this scenario, a batch is
released only when a new batch begins to fill the same queue.
The batch size for QUEUE-MEM is set to 5. Fig. 18 shows
how throughput (y-axis) varies as the percentage of batches
experiencing a dropped packet increases (x-axis). The input
throughput (green line) remains constant at 1.4 Tbps for all
the experiments. The output throughput (purple line) is

0.0
0.4
0.8
1.2
1.6

Th
ro

ug
hp

ut
[T

bp
s]

Input Output

0
2
4
6
8

10

Bu
ffe

r O
cc

up
an

cy
[M

B]

Queue-Mem ECMP-Fwd

0 2 4 6
Time [s]

0
20
40
60
80

La
te

nc
y

[μ
s]

P50 P99

Figure 17: Throughput (upper), buffer occupancy (middle)
and latency (lower) while injecting the MAWI trace.

inline with the percentage of batches with drops. Indeed,
by dropping the last packet of all the batches, i.e., the 20% of
total packets, decreases the output throughput to 1.12 Tbps.

0 20 40 60 80 100
Batches w/ Drops [%]

0.8
1.0
1.2
1.4
1.6

Th
ro

ug
hp

ut
[T

bp
s]

Input Output

Figure 18: Throughput while deliberately dropping the last
header of the batches.


	Introduction
	Where to Store a Packet Payload?
	A Queue-based Packet Storage
	Storing Payloads within the Switch
	Creating a FIFO Buffer using AFC
	System Design
	Discussion

	Implementation
	Evaluation
	Related Work
	Conclusion
	Methodology for the Power Usage Analysis
	Deployment as an Exit Point-of-Delivery
	Experimental Setup
	Additional Evaluation

