
Fast and Accurate Load Balancing
for Geo-Distributed Storage Systems

Kirill L. Bogdanov
KTH Royal Institute of Technology

kirillb@kth.se

Waleed Reda
Université catholique de Louvain

KTH Royal Institute of Technology
wfhsr@kth.se

Gerald Q. Maguire Jr.
KTH Royal Institute of Technology

maguire@kth.se

Dejan Kostić
KTH Royal Institute of Technology

dmk@kth.se

Marco Canini
KAUST

marco@kaust.edu.sa

ABSTRACT
The increasing density of globally distributed datacenters reduces
the network latency between neighboring datacenters and allows
replicated services deployed across neighboring locations to share
workload when necessary, without violating strict Service Level
Objectives (SLOs).

We present Kurma, a practical implementation of a fast and
accurate load balancer for geo-distributed storage systems. At
run-time, Kurma integrates network latency and service time
distributions to accurately estimate the rate of SLO violations for
requests redirected across geo-distributed datacenters. Using these
estimates, Kurma solves a decentralized rate-based performance
model enabling fast load balancing (in the order of seconds) while
taming global SLO violations. We integrate Kurma with Cassandra,
a popular storage system. Using real-world traces along with a
geo-distributed deployment across Amazon EC2, we demonstrate
Kurma’s ability to effectively share load among datacenters while
reducing SLO violations by up to a factor of 3 in high load settings
or reducing the cost of running the service by up to 17%.

CCS CONCEPTS
• Networks

KEYWORDS
Distributed Systems, Wide Area Networks, Cloud Computing,
Service Level Objectives, Server Load Balancing

ACM Reference Format:
Kirill L. Bogdanov, Waleed Reda, Gerald Q. Maguire Jr., Dejan Kostić,
and Marco Canini. 2018. Fast and Accurate Load Balancing for Geo-
Distributed Storage Systems. In Proceedings of SoCC ’18: ACM Symposium

on Cloud Computing , Carlsbad, CA, USA, October 11–13, 2018 (SoCC ’18),

15 pages.
https://doi.org/10.1145/3267809.3267820

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national government.
As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

2018. ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267820

1 INTRODUCTION
Modern interactive Web services require both predictable and low
response times [21, 43]. These requirements are often specified
in terms of Service Level Objectives (SLOs) and expressed as a
maximum bound on a target percentile (e.g., 95th) of the response
time. Failure to meet SLOs results in penalties, lost revenue for
service providers, or both [59, 87].

Meeting strict SLOs is a challenging task [34], because Web
services demonstrate temporal and spatial variability in load [23,
40]. Moreover, the workload can change due to sudden spikes in
content popularity [49, 93] caused by major events [48] or failures.
Datacenter-level load balancers [9, 36, 39, 75] are restricted by the
capacity of the cluster in which they run and cannot meet service
time guarantees when the load exceeds this capacity.

To satisfy increasing demands, cloud providers are continuously
expanding the number of datacenters and their geographic coverage
[16, 90]. This has led to an increased geographic density of
datacenters. Service providers exploit increased datacenter density
to deploy Web services closer to users, which reduces median
and tail response times, and to replicate data, which increases
service reliability and ensures survivability even during a complete
datacenter failure [17, 97, 98].

We leverage increased data center density to realize Kurma, a fast
and accurate geo-distributed load balancer. By accurately estimating
the rate of SLO violations, Kurma can reduce SLO violations by
redirecting requests across the Wide Area Network (WAN) as shown
in Fig. 1.1 Whereas, by operating at the granularity of seconds,
Kurma can work in tandem with modern elastic controllers, thereby
reducing over-provisioning and SLO violations incurred during
provisioning delays.

1Fig. 1 shows selected results from Fig. 8a, see §7.1 for details.

 0

 2

 4

 6

 8

Kurma Cassandra's
Dynamic Snitch

All
Local

No
rm

al
ize

d
SL

O
 v

io
la

tio
ns

Figure 1: Due to its fast and accurate load balancing, Kurma
achieves significant reduction in SLO violations relative to the
strictly local request serving strategy and Cassandra’s load
balancer operating across the WAN. Plot normalized to Kurma.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA K. Bogdanov et al.

1.1 Challenges in Load Balancing
To overcome capacity limitations, service providers automatically
scale local resources within individual datacenters by utilizing
techniques such as automatic resource allocation and speed
scaling [41, 57, 58, 69, 86]. Unfortunately, these approaches have
fundamental limitations as illustrated in the load curves shown in
Fig. 2.2 First, automatic resource scaling requires time to (i) detect
the need to scale up, (ii) acquire and start new service instances,
and (iii) warm up (integrate) new instances into a working cluster
(all combined into “Provisioning delay” shown in the figure). For
example, Amazon EC2 recommends scaling at a frequency of
1 minute to quickly adapt to load changes [8]. However, the average
VM startup time on EC2 is around 2 minutes [22]. Moreover, it can
take over 2 minutes for a Cassandra instance to start operating at full
capacity [69] (excluding the time necessary for data replication). As
a result, the provisioning time may be much longer in practice than
shown in the figure.

 10

 15

 20

Datacenter-1
Load

DNS-based
redirection

Provisioning delay

SLO violations

Unused capacity

Lo
ad

 [1
00

0x
]

Excess Load Elasticity Threshold

 10

 15

 20

 0 2 4 6 8 10

Datacenter-2
Load

Lo
ad

 [1
00

0x
]

Time [min]

Figure 2: Challenges of elastic scaling and geo-distributed load
balancing (red fill under the curve for Datacenter-1 represents
load that would lead to SLO violations), and Kurma’s approach
(green arrows).

To avoid SLO violations during the provisioning period,
techniques are needed to forecast upcoming workloads sufficiently
far into the future to account for provisioning delays. However, this
forecasting is known to be difficult, given the unpredictable nature
of flash crowds and failures [41, 69]. This results in wasteful over-
provisioning [14, 54]. While over-provisioning can reduce SLO
violations, the challenge is to provide the best quality of service
to customers while minimizing the cost of operating the service.
Kurma, addresses this challenge by providing fast and accurate

geo-distributed load balancing.
Coarse-grained load balancing via Domain Name System (DNS)

servers operates at the level of individual clients and provides only

2The load curves shown in Fig. 2 are an illustrative example of two experimental traces.
Actual elasticity thresholds can differ based on hardware. The rate of DNS redirection
is based on an estimate of client’s session departure rate discussed in §7.1.2.

limited control [26, 30]. Moreover, it does not take the actual load of
the target server into account [25, 80], and, due to caching, it cannot
respond quickly to changes in workloads [24, 74].

Fine-grained load balancing of requests among geo-distributed
datacenters presents a number of difficult challenges. To operate
effectively, a geo-distributed load balancer needs to answer the
following difficult questions in a timely manner: From the point
of view of each datacenter, can requests be redirected such that
responses will return within the SLO bound? How many requests
should be redirected without overloading remote datacenters? What
rates of SLO violations are to be expected?

Existing work on geo-distributed load balancing does not fully
address these challenges, as it either targets the average response
time [12, 45, 80] (but cannot guarantee SLO enforcement), uses a
modeling approach to estimate server performance [12, 52, 61, 101]
(which may not accurately capture complex system dynamics), or
overlooks variability of WAN latency [45, 52, 60].

Solving these challenges requires us to look beyond end-to-end
response time percentiles among datacenters; we must dissect how
these percentiles change as load is balanced among datacenters and
as WAN conditions change. Moreover, our design must be able to
quickly react to global changes while avoiding oscillations, herd
behaviors, and stale data decision.

1.2 Kurma Research Contributions
We present Kurma, a fast and accurate geo-distributed load balancer
for backend storage systems of Web services. To the best of our
knowledge, Kurma is the first system that accounts for the actual
service time and inter-datacenter WAN latency distributions to
accurately estimate the rate of SLO violations when redirecting
requests among datacenters. Kurma’s primary objectives are to: (i)
globally minimize or bound SLO violations under a dynamic, global
workload or (ii) reduce the cost of running a service.
Contribution (1): Taming SLO violations. Kurma decouples
request completion time into (i) service time, (ii) base network
propagation delay, and (iii) residual WAN latency caused by
network congestion.3 At run-time, Kurma tracks changes in each
component independently and thus, accurately estimates the rate of
SLO violations among geo-distributed datacenters from the rate of
incoming requests. Kurma tames the rate of SLO violations (local
or global) while load balancing requests across a geo-distributed
storage system. This allows Kurma to satisfy SLO objectives while
redirecting as few requests as possible, effectively minimizing inter-
datacenter traffic and associated costs.
Contribution (2): Fast adaptability. Each datacenter periodically
(at the granularity of a few seconds) solves a decentralized rate-
based performance model to compute the rates at which datacenters
should redirect requests among each other. This allows Kurma
to take advantage of short-term decorrelated changes (spikes) in
load across datacenters by redirecting requests towards neighboring
datacenters that currently have spare capacity (e.g., redirection can
take place between datacenters in neighboring regions, with different
time zones or cultural patterns).

3 We define residual network latency as a one-sided distribution obtained by subtracting
base propagation delay from packet delays.

Fast and Accurate Load Balancing

for Geo-Distributed Storage Systems SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Kurma achieves cost savings (i) by avoiding unnecessary scaling
out (e.g., as a result of intermittent spikes in load) when the load
can be shared among neighboring datacenters without violating SLO
targets (which relies on Kurma’s ability to accurately estimate the
rate of SLO violations, see §7.1.3), and (ii) by reducing global
over-provisioning by allowing spare capacity to be shared among
neighboring datacenters. Kurma can be used stand-alone or in
combination with existing cloud elasticity techniques [27, 46, 69]. In
the latter case, Kurma’s redirection can buy time for the associated
elasticity techniques to scale up without incurring excessive SLO
violations during the provisioning delay (see Fig. 2).
Contribution (3): Practical evaluation in a real system. We
implement Kurma in the Datastax CQL driver of the Cassandra
database. Using real-world traces, we evaluate Kurma across
datacenters of Amazon EC2 and simulations. Kurma reduces SLO
violations over existing techniques by up to a factor of 3 and reduces
the operational costs by up to 17%.

2 RELATED WORK
A large body of work has been conducted in the area of load
balancing for geo-distributed clusters [12, 35, 45, 52, 60, 80, 96, 98].
Content Delivery Networks (CDNs) [35] rely on request redirection,
which is done via DNS. Donar [96] builds a general-purpose service
selection mechanism that can also be used for this purpose. In our
evaluation (§7), we highlight Kurma’s fast adaptation by comparing
it with the DNS- and Donar-like approaches. Relative to the
modeling approaches such as WARD [79, 80] and the work by
Kanizo et al. [52], Kurma operates at a granularity of seconds and
rapidly adapts to workload changes. Moreover, Kurma adapts to
both the variability in network latency and uneven load distribution
among datacenters. Ardagna et al. [12] integrate geo-distributed load
balancing with elastic scaling; however, unlike Kurma, they can only
provide SLO bounds in terms of average response time.

Cardellini et al. [25] let an overloaded Web server initiate request
redirection to other servers based on a threshold metric, such as
percentile of the end-to-end response time. Dealer [45] computes
a Weighted Moving Average (WMA) of service time and network
latencies among service components of a geo-distributed service. In
contrast to both approaches, Kurma decomposes network latency
into base propagation delay and residual latency. While Wendell
et al. [96] mention the possibility of incorporating network latency
variance, Kurma achieves this in practice.
Dynamic data replication can be used as a form of load balancing
[4, 13, 85, 97]. Shankaranarayanan et al. [85] minimize response
time percentiles for geo-distributed datastores by solving a data
placement model. In contrast, Kurma considers service time delays
that could be affected by changes in replication policies and reacts
much faster to median WAN latency changes (seconds vs. hours).
Spanstore [97] replicates data by adhering to a target SLO percentile;
however, it does not take service time into consideration and
cannot estimate how the rate of SLO violations will change with a
change in load. Tuba [13] and Volley [4] perform storage system
reconfigurations periodically in the order of hours, whereas Kurma
works at the level of seconds and can adapt much faster to changes
in load.

Cloud elasticity. Numerous reactive [8, 51, 57, 72, 73] and
proactive [27, 69, 86, 99, 100] elastic scaling techniques aim to
maintain applications’ SLOs under dynamic workloads by sizing the
number of nodes that handle requests. However, third-party cloud
providers (such as EC2) do not provide access to the hypervisor,
thus certain techniques are inapplicable [41, 69, 86, 103].

The common challenge of these techniques is to accurately
forecast workloads sufficiently far into the future to spawn additional
VMs and quickly warm up the application. This is typically
compensated for by some form of over-provisioning [38, 86], which
is wasteful. In contrast, Kurma aggregates the spare capacity of
a few neighboring datacenters that are accessible within the SLO
bound, thus reducing global over-provisioning. Moreover, by rapidly
adjusting to changes in load and redirecting requests, Kurma
provides time for the elasticity techniques to scale up.

3 KURMA DESIGN
Reference system. Kurma targets a multi-tier service architecture,
which is common for modern Internet-scale Web services. The target
service is assumed to be deployed across a set of geo-distributed
datacenters interconnected by a WAN. Clients access the service
at one of the datacenters based on traditional DNS-based load
balancing. Once clients’ requests arrive at application servers (load
balanced through frontend servers), these servers in turn generate
tens to thousands of individual requests for the backend servers (e.g.,
a distributed database such as Cassandra). Meeting a strict SLO for
the overall client requests’ completion times depends on consistently
delivering low-latency responses from the service’s backend, despite
multiple sources of performance variability [34, 89].
Overview. Kurma tames SLO violations at the service’s backend
by realizing an efficient geo-distributed load balancer that accurately
estimates the rates of SLO violations for requests that are served
locally and those that are redirected across the WAN. Fig. 3 presents
an overview of our approach. An instance of Kurma runs at each of
the service’s datacenters. Each Kurma instance periodically performs
the following tasks: (i) it monitors the load (specifically the rate
of requests to this backend, read/write ratio, and request sizes),
measures WAN latency to remote datacenters, and monitors SLO
violations for requests served locally and remotely; (ii) exchanges the
measured load, WAN latency, and SLO violations with other Kurma
instances; and (iii) computes inter-datacenter request redistribution
rates and enforces these rates at the application servers. The problem
of intra-datacenter load balancing is well understood [36, 39, 71, 75].
Hence, Kurma does not address intra-datacenter load balancing, but
rather relies on existing load balancing within the datacenter. We
further assume that by redirecting requests, Kurma does not cause
network congestion.

Kurma solves an optimization problem to determine the request
redistribution rates (i.e., how to load balance requests among
datacenters) to minimize or bound the global number of SLO
violations at a target level (e.g., 5%). In particular, each Kurma
instance computes the redistribution rates based on three inputs: (1)
current loads, (2) distribution of WAN latencies, and (3) a family of
SLO curves, one per pair of datacenters. Loads and WAN latencies
were gathered in task (ii). For each pair of source application tier and
a destination storage tier, an SLO curve describes the relationship

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA K. Bogdanov et al.

Kurma

Datacenter 3

Datacenter 1

Backend Servers

App
Server

Datacenter 2

WAN
Conditions

Rates
λ1, λ2, λ3 App

Server

SLO
Curve

Constraint Solver

Kurma Kurma

Current Load & WAN Conditions Exchange

SL
O

 V
io

la
tio

ns

Load

(λ1,λ3)

(λ1,λ2)

Rates of Redirected Requests

λ1→ 3

λ1→ 2

λ1,λ2,λ3: aggregate incoming client request
rates to application servers of datacenteri

Computed Service Rates
Local: λ1→ 1 Redirected: λ1→ 2, λ1→ 3

WAN
λ1→1

Backend Servers

λ2→2WAN
Conditions

Rates
λ1, λ2, λ3

Figure 3: Kurma overview.

between the offered load and the expected fraction of requests that
would violate the SLO. An SLO curve is parametrized based on the
current load (i.e., request sizes, arrival rate, and read/write ratio),
datacenter capacity (i.e., the number of backend servers currently
running), and the WAN latency distribution from the sender to the
datacenter. An initial set of SLO curves is obtained via offline
backend profiling (see §4) or can be estimated at run-time using
queue modeling techniques. SLO curves are adjusted at run-time
according to measured inter- and intra-datacenter network latencies
(base propagation and residual latency).

If interference is detected, Kurma performs SLO curve
substitution by selecting the best fitting curve from a family
of previously obtained SLO curves based on the closest match
between the expected and actual rates of SLO violations. When
solving the optimization problem at run-time, each Kurma instance
deterministically chooses an appropriate SLO curve based on current
conditions. The process of selecting an appropriate SLO curve is
quick (see §7.1.4).

Application servers in a datacenter enforce the request
redistribution rates computed by that datacenter’s Kurma instance.
Because Kurma only computes aggregate rates, these need to be
enforced by the application servers in a distributed manner. This
problem is well suited to distributed rate-limiting techniques [9,
78, 88]. These techniques have been applied within datacenter
environments where servers can communicate frequently and with
very low latencies. We assume that a similar approach can be
employed in our design, but for clarity present our solution in terms
of aggregate rates. Furthermore, using aggregate rates is appealing
as it makes the approach scale better.

4 LOAD VERSUS SLO VIOLATIONS: LOCAL
AND REMOTE

Fig. 4 shows the relationship between a system’s throughput and
SLO violations in the case of a Cassandra cluster. In this experiment,
we profiled a five-server cluster deployed at Amazon EC2 in
Frankfurt. The SLO target was set to obtain a 95th percentile latency
of 30 ms. We gradually increased the offered load until we hit the
cluster’s saturation point at around 55k req/s (shown by the black
arrow in the bottom plot). Beyond this point, the arrival rate exceeds
the service rate, and the servers’ queues start to grow (unbounded).

Fig. 4 also shows that this cluster of five servers can sustain
at most 43k req/s before 5% of the responses to requests exceed
the SLO. Thus, a load of 43k req/s defines the cluster’s saturation
point for the 95th percentile (shown by the blue arrow in the top
graph). In the presence of an elastic controller, this level of load
would trigger the addition of a VM. Similar load and resource
pressure models (e.g., CPU and RAM utilization) are fairly accurate
and are described in works on elastic scaling [38, 57, 69, 73].
However, applying them directly to geo-distributed load balancing
was not done previously; primarily due to the difficulty in accurately
estimating SLO violations in remote datacenters given dynamically
changing WAN conditions.

The three-way relationship between the load, WAN latency
distribution, and rate of SLO violations has important implications
when attempting to load balance across a geo-distributed system.
Consider a scenario where a remote datacenter located in Ireland
attempts to redirect its requests to a neighboring datacenter in

 0

 5

 10

30
 m

s
SL

O

vio
la

tio
ns

 [%
]

Local DC From Ireland From Ireland Estimated

 0
 20
 40
 60
 80

 0 10 20 30 40 50 60 70
7000

Datacenter
saturation
point

Datacenter
saturation point
for target SLO

Remote Datacenter
saturation point
for target SLO

Th
ro

ug
hp

ut
 [x

10
00

]

O�ered load [x1000]

Throughput
Linear

Figure 4: Relationship between throughput and the rate of
SLO violations for a five-server Cassandra cluster running
on Amazon EC2 on r4.large instances. The workload was
generated using an open loop workload generator with a
Poisson request interarrival distribution.

Fast and Accurate Load Balancing

for Geo-Distributed Storage Systems SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Frankfurt. The WAN RTT between these datacenters is 22 ms (at
the time of this measurement); therefore, keeping SLO violations
under 5% when doing request redirection is viable only when
Frankfurt can serve 95% of requests in under 8 ms. This requires
that the utilization at the Frankfurt datacenter be below 78%. This
relationship is captured by the green line in Fig. 4, which shows SLO
violations observed by the Ireland datacenter for requests redirected
to Frankfurt. The green line shows that the SLO violations for
redirected requests increases faster than for requests that are served
locally. Consequently, the load at the remote datacenter (assuming
the same hardware configuration) should not exceed 36k req/s in
contrast to 43k req/s when requests are served locally. In other
words, this implies that the farther away the remote datacenter is,
the less loaded it should be in order to serve remote requests within
their SLO target. Naturally, this creates a trade-off between the
effective distance between neighboring datacenters and the load (on
the receiver’s side) that a datacenter would experience while serving
redirected requests.

To navigate these trade-offs, Kurma constructs a set of SLO
curves that is local to each datacenters (discussed in §4.1), then for
each pair of source and destination datacenters, Kurma combines the
destination datacenter’s SLO curves with the WAN latency between
the two datacenters, in order to estimating the expected rate of SLO
violations for requests redirected from the source to destination
datacenters (discussed in §4.2).

4.1 Constructing Local SLO Curves
To construct SLO curves, we profile a warmed-up backend cluster
of a fixed size within a single datacenter under gradually increasing
loads and variable read/write ratios. For each profiled configuration
we (i) measure the percentile that corresponds to the SLO target
latency (e.g., 30 ms at 95th percentile)4

and (ii) preserve the
measured service time distribution for use at run-time in combination
with WAN latency distribution in order to accurately estimate the
rate of SLO violations for requests sent from remote datacenters (see
§4.2). Collecting the entire service time distribution is crucial, as
pressure models (obtained either offline or online) commonly used
in elastic controllers (i.e., load vs rate of SLO violations) cannot

accurately be combined with a joint distribution of network delays
to estimate the rate of SLO violations in remote datacenters.

The sample loads are spaced exponentially, but with more sample
points closer to the datacenter’s saturation point; thus, giving Kurma
greater accuracy around the inflection point of the SLO curve. Each
profiled configuration produces a single point in a multi-dimensional
space and represents the expected rate of SLO violations for that
configuration. At run-time, based on the current workload for each
datacenter, Kurma selects an individual SLO curve that is a three
dimensional surface that maps a workload mix (reads and writes)
to the expected rate of SLO violations (blue line in Fig. 4 shows
the curve for reads only). Kurma uses bilinear interpolation to
estimate the rate of SLO violations for read/write ratios that were
not explicitly profiled.

4Some services might distinguish between read and write operations by having different
SLO targets for each (i.e., due to distinctly different service times), and this can be
accounted for when constructing the SLO curve.

Our current prototype relies on offline profiling to establish the
initial relationship between the load and the rate of SLO violations;
in §7.1.1 we also show how this relationship can be estimated using
queue modeling formulae [44, 52, 80, 101]. Furthermore, assuming
linear or near-linear scaling of modern storage systems [29], the
SLO curve of a datacenter can be derived from a joint distribution of
service times of individual servers in the cluster. Kurma can utilize
SLO curves constructed using any of the above techniques.

4.2 Including WAN Latency Distribution
To reason about the SLO violations at remote datacenters, we
incorporate a WAN latency distribution into the SLO curves at
run-time. One way to achieve this would be to repeat the offline
profiling while generating the workload from remote datacenters,
thus measuring end-to-end response time distributions of redirected
requests that incorporate both current WAN latency and service time.
However, this approach does not scale well (as it is quadratic in
the number of datacenters). Furthermore, WAN conditions often
change [28, 47], which would require re-profiling the system on a
regular basis.

To address this issue, we view the total request completion time as
two components: service time within a datacenter and WAN latency
between datacenters. We perform service time profiling only once
(as described above), then at run-time, we reuse these service time
distributions and combine them with WAN latency to obtain an
accurate SLO curve for each pair of datacenters.

To accurately and timely incorporate WAN latency into an SLO
curve, we account for both the base propagation delay (which
depends primarily on physical distance and can change when
routing changes) as well as the residual latency (which is the result
of queuing and congestion and depends on the level of network
utilization).

Routing changes can appear as distinct shifts in network latency
[28, 76] that can cause temporal skew in the measured end-to-end
delay distribution. Methods that are oblivious to these shifts (e.g.,
variants of Exponentially Weighted Moving Average (EWMA)) will
experience delays in adaptation to changes in latency distribution
caused by such routing changes. In contrast, by measuring these
quantities separately, Kurma rapidly reacts to detected routing
changes and selects the pre-computed SLO curve that matches
the current base propagation latency. When combined with the
(locally-profiled) service time distribution, this yields an accurate
remote response time distribution and thus can be used to estimate
the rate of SLO violations for redirected requests (for more details
see [19]).

Fig. 5 shows the estimated remote service time between the
sender and receiver located in the Frankfurt and Ireland datacenters,
respectively. We use Monte Carlo sampling to jointly sample from
the distribution of residual latency (blue line) and service time
(orange line) distributions. The joint distribution is then combined
with the base propagation delay (vertical dash-dotted line)5 to
estimate the remote service time distribution (green line). We
empirically validated this curve by comparing it with the distribution
of service times measured from the remote datacenter. We find that

5Note, the base propagation latency is not constant throughout the measurement interval
and shows the last known value.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA K. Bogdanov et al.

the curves are well aligned, suggesting this estimation technique has
good accuracy.

Moreover, measuring network latency as a single metric (WMA
[45] or a specific percentile [85, 97]) is insufficient as percentiles
of two distributions are not additive, thus such a metric cannot be
combined with the service time distribution to estimate percentile of
the joint distribution.

In contrast, the black dashed curve in Fig. 5 shows the remote
service time obtained by jointly sampling from the raw latency
distribution and service time distribution without decoupling the
WAN latency into base propagation latency and residual latency.
The difference is substantial even for a well provisioned network
with a relatively small range of propagation delays (between 22 and
27 ms) and would result in under- or over-estimating the rate of SLO
violations.

The process of incorporating two WAN components with a
set of service time distributions to estimate SLO curves is not
computationally intensive and can be completed within milliseconds.
Network congestion is typically infrequent across WAN links [28],
thus, the re-computation does not need to occur often. Furthermore,
SLO curves can be precomputed for the expected range of base
propagation delays (e.g., with a step of 1 ms) allowing for
instantaneous run-time selection of the appropriate curve under
routing changes; this can happen at the frequency of model
recomputation.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 5 10 20 25 30 35

+ + =
Di�erence in estimating
percentage of SLO
violations at the target
latency (e.g., 30 ms)CD

F

Latency [ms]

Residual WAN latency
Local service time
Base propagation latency

Estimated remote service time, Kurma (base + residual)
Estimated remote service time (raw samples)

Figure 5: Remote service time estimation.

5 COMPUTING REDISTRIBUTION RATES
We now introduce the load redistribution model used in Kurma.
Table 1 summarizes the primary notations used in this paper.
Throughout, we use i, j 2 N to denote datacenters in the set of
datacenters N . The model’s outputs are the rates �i j at which
application servers at i redistribute requests to backend servers at j.

We denote by Di the input request rate at i. These requests are
generated by application servers at i. Thus, the total demand at i is
�i = Di �

Õ
j �i j +

Õ
j �ji .

� denotes a family of SLO curves. These SLO curves are obtained
periodically as described in the previous section and are treated as
an input from the viewpoint of model computation. In particular, �i j
is the SLO curve for the i, j pair of origin-destination datacenters,
respectively. Each SLO curve is a function of request rate and �, the
SLO violation threshold. For a datacenter i redirecting requests to
datacenter j, �i j�i j (�j , �) gives the expected rate of SLO violations
of requests redirected from i to j.

Table 1: Notations used in the model formulation.

N Set of geo-distributed datacenters
�i j Rate at which application servers in i redirect backend

requests to j
Di Input rate of backend requests at datacenter i
�i Total demand of backend requests at datacenter i
� SLO violation threshold (e.g., 5% for 95th percentile)
�i j (�j , �) SLO curve of requests redistributed from i to j ;

�i j is a function of demand at j and �

Next, we introduce two optimization models: KurmaPerf, which
aims to minimize global SLO violations and KurmaCost, which is
designed to minimize cost while complying with SLO bounds.

5.1 KurmaPerf
The objective of KurmaPerf is to minimize global SLO violations
across a geo-distributed service:

min
�i j

’
i

’
j
�i j�i j (�j , �)

subject to
’
i
�i j = Di , 8i

�i j � 0, 8i, j

©≠
´
’
j :j,i

�i j
™Æ
¨
©≠
´
’
j :j,i

�ji
™Æ
¨
= 0, 8i

(1)

The first constraint establishes demand satisfaction. The second
constraint requires non-negative rates. The last constraint means
that a datacenter cannot concurrently redistribute requests to other
datacenters while receiving requests from other datacenters. We
added this last constraint after we experimentally verified that the
kind of request redistribution it prevents: (i) is cost-inefficient, as
it results on average in more redirects for little gain and (ii) greatly
increases model computation time as the solution space is much
larger.

5.2 KurmaCost
By minimizing global SLO violations, KurmaPerf improves overall
application performance. However, it comes at the expense of
redirecting more requests over WAN links than are strictly necessary
to meet the SLO target. Therefore, we introduce KurmaCost, an
alternative optimization model to satisfy SLO objectives while
redirecting as few requests as possible, effectively minimizing inter-
datacenter traffic:

min
�i j

’
i

’
j :j,i

�i j

subject to
’
j

�i j�i j (�j , �)
Di

 �, 8i

and same constraints as in (1)

(2)

The additional constraint above imposes that the total SLO
violations experienced by every datacenter must be below the SLO
target.

Fast and Accurate Load Balancing

for Geo-Distributed Storage Systems SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

In contrast to KurmaPerf’s focus on global SLO violations,
KurmaCost focuses on local SLO violations.6 This difference is
particularly important in relation to elasticity controllers. Elasticity
controllers are typically deployed in a decentralized fashion and
provision nodes based on performance indicators at each local
datacenter (e.g., local SLO violations). By ensuring that each
datacenter’s SLO violations remain below a stated threshold,
KurmaCost works in tandem with elastic controllers to avoid scaling
out unnecessarily, which further reduces costs.

These optimization problems are non-convex (as can be observed
by simply noting the non-convexity of the complementarity
constraints in 1). Thus, it is challenging to solve them exactly. Our
approach is to quantize SLO curves such that each �i j is a multiple
of a minimum load balancing quantum (the default is 1% of the
total capacity of a datacenter). This enables the solver to consider
all possible solutions if necessary, which is not costly given the
settings and the modest number of datacenters that we consider. By
increasing the minimum load balancing quantum, we reduce the
model’s computation time at the expense of load balancing precision.
Our technical report [20] provides sensitivity analyses for both the
minimum load balancing quantum and the model re-computation
interval.

6 IMPLEMENTATION
We implement the core logic of Kurma in the Datastax Java driver
[33] — a library that provides an API for communicating with
Cassandra. Even though our Kurma instances are logically-separated
from the application tier, such a driver implementation consolidates
both the Kurma instance and application-server logic at the same
node. The driver establishes TCP connections with local and remote
backend servers, allowing Kurma to have full control of where
requests are redirected.
Kurma-to-Kurma communication. We distribute request rates,
measured SLO violations, and WAN conditions among the Kurma
instances — via a full-mesh broadcast that sends messages once per
model recomputation interval. Global state dissemination and model
computation are synchronized among all Kurma instances using NTP

6By considering a weighted sum of SLO violations across all datacenters as a constraint,
it is straightforward to extend KurmaCost to operate with a global SLO target.

Timemk mk+1Time interval between consecutive
model recomputations

Globally synchronized
state dissemination point

All updates delivered
to all datacenters

Safety
margin

All Kurma instances
broadcast their state

Model
recomputation

t

Figure 6: Kurma exchanges its states once per model
recomputation interval (denotedmk andmk+1). The time when
instances exchange their messages is determined at run-time
such that all datacenters receive the latest update just before
next model recomputation.

[66]. Fig. 6 shows the model execution and communication timeline.
Triangular markers (mk andmk+1) indicate globally synchronized
model recomputations at fixed intervals. The red circle indicates a
globally synchronized state dissemination point, i.e., the moment
when all nodes broadcast their state. The exact time of the broadcast
is determined by the time necessary for all messages to reach
all datacenters. Specifically, �t is deterministically computed by
all Kurma instances at run-time and equals the one-way WAN
delay between the two farthest datacenters in the system and a
fixed safety margin to compensate for NTP error and processing
delays (set to 20 ms by default). This guarantees that all Kurma
instances will receive identical up-to-date information just before
the next scheduled model recomputation. This message exchange
creates negligible overhead both in terms of network bandwidth and
associated costs. Alternatively, gossiping protocols [37, 53] could
be used to address potential communication scaling issues.
Solving the model. To implement the model, we use the MiniZing
constraint modeling language [68]. We compile and solve the model
using a Gecode constraint solver [84] at configurable intervals
(default 2.5 s). However, other modeling languages and solvers
can be used to solve Kurma’s model. At run-time, Gecode is pinned
to a single dedicated CPU core.

Currently, Kurma maintains the same ratio of reads and writes
for redirected rates as in the source datacenter (i.e., �i j has the same
read/write ratio as Di).

In the normal operating mode, Kurma does not utilize a direct
feedback loop for SLO violations, thus oscillations and herd
behaviors are not possible despite the system’s rapid reactions
to changes in load. In its current implementation, SLO violation
feedback is exploited only when VM interference is detected and
run-time adjustments to the SLO curve are needed; however, this
feedback operates at much slower pace (minutes vs. seconds) than
model recomputation and does not cause oscillations.
WAN measurements. As noted before, we decouple residual
network latency from the base propagation latency [18, 64]. Hence
before each experiment, we conduct a short-term (5 minute) network
measurement among all datacenters. First, in each datacenter we
deploy a set of measurement probes (3 by default) that perform
periodic TCP-level RTT measurements towards probes deployed in
remote datacenters (default measurement interval is 200 ms). The
obtained latency samples are post-processed by removing the base
propagation latency from each latency sample, thus leaving only
residual network congestion distribution (for more details see [19]).

Then, for each pair of source and destination datacenters,
we pre-compute a family of SLO curves by combining each
destination’s datacenter service time distributions with the network
congestion distributions between the datacenters (as described in
§4). Furthermore, for each pair of datacenters, we expand the family
of SLO curves by considering the previously observed range of base
propagation network latencies with a step size of 1 ms.

At run-time, each instance of Kurma measures the base
propagation WAN latency from itself to remote datacenters. For
each destination, Kurma monitors the minimum response time over
a one-second window. Then, we subtract the minimum service time
that we obtained during offline system profiling. The resulting base
propagation latency is then rounded off to the nearest ms and used
as an index to select a specific SLO curve from the family of SLO

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA K. Bogdanov et al.

curves obtained in the previous step. These WAN measurements are
then exchanged among the distributed Kurma instances.

Based on our measurements, the WAN between Amazon EC2’s
three neighboring datacenters (Frankfurt, Ireland, London) is well
provisioned and congestion is rare; although, routing changes
do occur regularly. Therefore, for the 30 minute evaluations we
measured the residual latency distribution only once before each
experiment. However, for long term production deployments it
would be advisable to measure residual WAN latency distribution
and recompute SLO curves at run-time.

7 EVALUATION
We evaluate Kurma and present experimental results comparing its
performance with other geo-distributed load balancing techniques
in real-world settings. We answer the following questions: (i) How
effective is KurmaPerf at minimizing SLO violations (§7.1)? (ii)
How accurately does KurmaCost adhere to a target SLO bound
(§7.1.3)? (iii) How much cost savings can KurmaCost achieve
(§7.2)?
Evaluation methodology. To evaluate Kurma, we deployed
Cassandra clusters across three geo-distributed datacenters of
Amazon’s EC2 located in Frankfurt, London, and Ireland. Each
datacenter hosted up to 5 r4.large on-demand instances
comprising the actual cluster and one c4.4xlarge instance
running the YCSB workload generator [31]. The replication factor
was set to 3 (each key is replicated 3 times in each datacenter). In
all our experiments we assume eventual consistency — which is
commonly used in practice [50, 94]. We use consistency level ONE
for both reads and writes. In line with the average value sizes found
in production systems [15], we populate the database with 1 million
keys that map to values of 150 bytes. The dataset was stored using
Amazon’s general purpose SSDs [6]. To minimize the impact of
garbage collection on our measurements, we ran both Cassandra and
YCSB instances on the Zing JVM [91]. For all evaluations the SLO
target was set to 30 ms at the 95th percentile.
Workload traces. We evaluate Kurma using real-world traces
with temporal variations in workload (obtained from [2]). These
traces represent a Web-based workload and were recorded across
multiple geo-distributed datacenters over a period of 88 days. The
traces show the rate of object requests per datacenter at one second
resolution. For each second of a trace we fit a Poisson distribution
to allow us to estimate the inter-arrival request rates at sub-second
resolution. Table 2 shows the mapping between the original traces
to the datacenter where we have replayed them with the indicated
shift in time to correlate these traces with the time zones used for
our experiments.

We modified YCSB to dispatch requests according to the
timestamps recorded in a trace.7 For each experiment we verify
that the workload generator is able to keep up with the required
sending rate, thus acting as an open loop workload generator. Key
popularity was set according to a Zipf distribution (as in [31]).

For the evaluation on Amazon EC2, we selected two distinct
intervals of 30 minutes (shown in Fig. 7). Both intervals were

7Source code is available at [82].

Table 2: Mapping between the datacenters where a trace was
initially recorded to the datacenter where it was replayed (left).
Observed range of WAN base propagation latencies between
datacenters (right).

Source Time Replayed Observed base propagation RTT (ms)
datacenter shift (hrs) in London Ireland Frankfurt

Virginia +0 London 0 9-10 11-14
Texas +1 Ireland 9-10 0 22-27
California +4 Frankfurt 11-14 22-27 0

taken from a single day of the trace8 and scaled by 450 to match
the capacity of our hardware testbed while preserving workload
variations. For brevity, we refer to them as Trace-1 and Trace-2,
respectively. Trace-1 demonstrates a major load imbalance, where
one of the datacenters is more loaded than the rest. This provides
an opportunity for load redirection. In contrast, in Trace-2, spare
capacity is very limited and constantly shifts among datacenters,
making load balancing challenging. To operate effectively in this
trace a geo-distributed load balancer needs to recognize and act upon
load balancing opportunities.

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

Ar
riv

al
 ra

te
 [1

00
0x

 re
q/

s]

Trace time [min]

London Ireland Frankfurt

(a) Trace-1: 147 M requests.
5-VMs per datacenter.

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

Ar
riv

al
 ra

te
 [1

00
0x

 re
q/

s]

Trace time [min]

Frankfurt London Ireland

(b) Trace-2: 105 M requests.
3-VMs per datacenter.

Figure 7: Two workload traces used in the evaluation.

7.1 How Effective is KurmaPerf at Minimizing
SLO Violations?

We experimentally evaluated Kurma’s ability to reduce SLO
violations under dynamic workloads. Specifically, we evaluate the
following alternative techniques: GlobalRR: Classical Round Robin
algorithm that uniformly balances requests among all backend
servers of all datacenters. AllLocal: All datacenters serve incoming
requests locally without any redirection. LatencyAware: Uses an
EWMA of the response times to choose the best performing
backend servers (as implemented in [33]). DynamicSnitch: This is
Cassandra’s default strategy that performs dynamic replica selection
[11]. C3: A state of the art distributed load balancing technique
[89].9 MMc: Kurma operates on SLO curves estimated using M/M/c
modeling. We configure Kurma to track the average request arrival
rate over a 5 s window, with its model re-computation interval set
8Day #49 [2] starting at 10:00 and 19:00 hours respectively based on Virginia’s time
zone.
9Because C3 has only been implemented in Cassandra version 2.0, we repeated Kurma’s
evaluation using two different versions of Cassandra (i.e., 2.0 and 3.9). Since Kurma
was implemented in the CQL driver, it is backwards compatible with Cassandra 2.0.

Fast and Accurate Load Balancing

for Geo-Distributed Storage Systems SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

 0

 2

 4

 6

 8

Kurma
Perf

Global
RR

All
Local

Dynamic
Snitch

Latency
Aware

Kurma
Perf

C3

Cassandra 3.9 Cassandra 2.0

12.8GB
35.7GB

6.1GB

12.6GB

69.3x
37.2GB

9.7GB

45.4x
5.0GB

No
rm

al
ize

d
SL

O
 v

io
la

tio
ns

(a) Trace-1, executed with 5 VMs per datacenter.

 0

 2

 4

 6

 8

Kurma
Perf

Global
RR

All
Local

Dynamic
Snitch

Latency
Aware

Kurma
Perf

C3

Cassandra 3.9 Cassandra 2.0

4.3GB
30.6GB

2.5GB
2.6GB

30.3x
24.4GB

4.3GB

26.6x
16.2GB

No
rm

al
ize

d
SL

O
 v

io
la

tio
ns

(b) Trace-2, executed with 3 VMs per datacenter.

Figure 8: Normalized SLO violations achieved on Amazon EC2 (reads only). Each bar represents an average value across five
experiments. Kurma reduces the global SLO violations by about 3x when compared to schemes that do not blindly spraying requests
across the WAN. The number above each bar is the total data transfer (in GB) between datacenters incurred by each technique
over 30 minutes. Note, AllLocal technique also generates inter-datacenter WAN traffic, due to read repairs and gossiping among
geo-distributed Cassandra nodes. The absolute average value of SLO violations achieved by Kurma in (a) and (b) are 1.1%/0.8% and
2.4%/1.1% (Cassandra 3.9 and 2.0 respectively).

to 2.5 s, with a load balancing resolution of 1%. Auto-scaling was
turned off, thus the observed SLO violations is a direct indicator of
each load balancing technique being able to actively redirect load
while utilizing spare capacity among datacenters throughout the
experiments.

7.1.1 Minimizing SLO Violations for Reads. Fig. 8 shows
the SLO violations for the different techniques — normalized by
Kurma’s violations. Unsurprisingly, GlobalRR achieves the second
best result after Kurma, as uniformly distributing requests among all
datacenters GlobalRR avoids “hot spots” and because all datacenters
were within the service’s SLO bound (resulting in a relatively low
rate of SLO violations). However, this is an ideal scenario for this
technique as, in real settings, not all datacenters might be viable
targets due to excessive WAN latency; hence, applying this technique
could lead to unsatisfactory performance. Moreover, it consumes
2.9 and 7.1 times more bandwidth than Kurma in the two traces,
respectively; hence, if deployed, it would incur a high cost.

LatencyAware maintains an EWMA of latencies to each node. It
times out underperforming nodes with latencies higher than those of
the fastest node by a pre-defined “exclusion threshold”. However, in
practice it is unclear how to set the timeout period and the exclusion
threshold. Using the default values (2.0 and 10 s), this technique
results in the second highest number of SLO violations, possibly
because it enforces an aggressive exclusion algorithm that can result
in herd behaviors [67, 83].

DynamicSnitch uses an exponentially decaying reservoir [32] to
track median request completion time, but does not decouple network
latency and service time components. The median latency of the
requests sent remotely is much higher than for the local nodes; hence,
dynamic snitch fails to exploit remote redirection opportunities and,
as a result, heavily favors local reads.

Overall, C3 provides poor performance for both traces. We argue
that this is a direct consequence of the fact that C3’s cubic function
heavily penalizes nodes with larger queue sizes. Specifically, due
to WAN delays, C3 greatly overestimates queue sizes at the remote
servers, leading to suboptimal load balancing decisions. While this

might work well within a single datacenter, we find that this scheme
provides suboptimal partitioning of load on a geo-distributed scale.
Is profiling of a real system beneficial? To build SLO curves for
an M/M/c model, we follow the steps outlined in §4; however, we
estimate the percent of SLO violations under different levels of load
by computing M/M/c sojourn time distribution (see page 46 of [3]).
Based on our measurements we set c = 10 and µ = 5500k . At an SLO
target of 5%, M/M/c overestimates cluster capacity by 11000 req/s.

To evaluate the effects of using M/M/c we ran the same set of
experiments as in Fig 8. Under both workloads (Trace-1 and Trace-2)
Kurma performs identically to AllLocal. However, as the SLO curves
estimated by M/M/c do not represent the actual system’s behavior,
Kurma does not redirect a sufficient number of requests.

While other queuing techniques could be used to produce a more
accurate estimate of the response time, comparing these techniques
is outside the scope of this work. Here, we merely demonstrate that
Kurma can operate with different types of SLO curves as inputs.
In summary, for our evaluations, we found that using real system
profiling proved to be very beneficial because standard modeling
approaches did not produce an accurate relationship between load
and the rate of SLO violations.

7.1.2 Minimizing SLO Violations with a Mix of Reads and
Writes. Next, we ran read/write experiments with Trace-2 and a 4%
write ratio per datacenter. In Cassandra, writes are always propagated
to all replicas that hold the given key, whereas the consistency
setting merely implies the number of replicas required to confirm the
write operation before a response can be sent back to the client. All
datacenters propagate their fraction of writes to each other, causing
each datacenter to experience a variable write ratio (8% to 16%)
throughout the trace duration.

We introduce two additional baselines in which we used Kurma’s
SLO curves and model to decide on the actual load redistribution;
however, we configured the system’s responsiveness to match
two prominent techniques: DNS and EWMA. The DNS case
is an approximation of DNS based load balancing that takes
clients’ session stickiness into account. We used the client’s session
departure rate from Fig. 5(b) in [60] to obtain an estimate of the rate

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA K. Bogdanov et al.

 0

 1

 2

Kurma
Perf

Global
RR

All
Local

Dynamic
Snitch

Latency
Aware

DNS
+Kurma

EWMA
+Kurma

Cassandra 3.9

17.9GB

43.0GB
14.8GB 14.9GB

16.3x
35.6GB

19.4GB
16.2GB

No
rm

al
ize

d
SL

O
 v

io
la

tio
ns

Figure 9: Normalized SLO violations achieved on Amazon EC2
(reads and writes on Trace-2). Each bar represents average
value across five experiments. Absolute average value of SLO
violations achieved by KurmaPerf is 5.07%

limit at which load can be redirected among datacenters (we set this
limit to 1.3%/s, i.e., 3.25% per 2.5 s of the model’s re-computation
interval). EWMA is a slow-paced, model-based load balancing
approach tailored towards adapting to diurnal patterns (based on
Donar’s configurations [96]). Specifically, we tracked the rate of
request arrival as an EWMA (� = 0.8, interval 10 minutes) with
model re-computation every 10 minutes.

Fig. 9 shows the results. Using Kurma’s model, DNS was able
to outperform GlobalRR and AllLocal, although due the stickiness
of its clients, the technique generated more intra-datacenter traffic
and showed lower SLO reduction when compared to KurmaPerf.
EWMA was able to track at a coarse granularity the load trends
at each datacenter; by redirecting a fraction of requests it showed
improvements over no redirection at all. However, it was unable to
take advantage of short-term variability in load, thus demonstrated
much lower performance than Kurma.

While in this evaluation we considered only full replication
([56, 62]), Kurma can work with multiple keyspaces and dynamic
replication policies (e.g., when a fraction of the most popular keys
reside at the caching servers [94]). Kurma is inherently aware of
keyspaces’ replication policies, allowing it to direct requests to
datacenters that can serve these requests while adhering to the
redirection rates provided by the model.

7.1.3 Maintaining Target SLO. Fig. 10 shows a time series of
the local SLO violations for London — our most loaded datacenter
— averaged at one minute intervals. We can see that both KurmaPerf
and KurmaCost significantly reduce SLO violations compared to
AllLocal. This highlights the fact that KurmaCost maintains the SLO
violations close to its configurable target of 5%, thus minimizing the
number of redirections compared to KurmaPerf; hence it is more
cost-efficient.

7.1.4 Adapting to Performance Variability. In this section
we show how Kurma can adapt to detected cloud interference. We
use KurmaPerf with the same setup as in §7.1, but use a synthetic
workload with a constant arrival rate of 10k req/s at each datacenter.

Fig. 11 shows measurements of Kurma’s SLO violations in
Frankfurt and London averaged over 1 minute intervals. In the
interval up to 2 minutes the average rate of SLO violations in both
datacenters is low and within 0.1% of the expected value. At around

0 5 10 15 20 25

0
10

20
30

40

Time [min]

SL
O

 v
io

la
tio

ns
 [%

]

5% SLO Bound

All Local KurmaPerf KurmaCost

Figure 10: SLO violations in London with Trace-1, reads only.
We show that, while KurmaPerf keeps the SLO violations well
below 5%, KurmaCost still adheres to the SLO threshold while
being more cost-effective.

2 minutes, we introduce CPU intensive processes on 2 out of 5 VMs
in Frankfurt. This causes SLO violations to rise above 2% and thus
deviates markedly from the expected value. One minute later we
emulate reception of an interference signal from a specialized tool
(e.g., DeepDive [70]). At the next scheduled model recomputation
interval, Kurma performs a search through the family of SLO curves
to find a better match for the observed rate of SLO violations. The
best fitting SLO curve is determined using least squares fitting by
comparing the expected rate of SLO violations with the observed
rate over a set of recent measurements exchanged via the global state
dissemination. Natural workload variability allows Kurma to obtain
multiple sample points on the curve at run-time. The process is fast
and deterministic, thus all instances of Kurma find identical matches
and start using the appropriate SLO curve in the next round of model
recomputations.

 0

 1

 2

 3

 4

 0 1 2 3 4 5 6

Interference
introduced

Interference detected:
30% of requests
redirected to London

1
m

in
. a

ve
ra

ge
 S

LO
 v

io
la

tio
ns

 [%
]

Experiment duration [min]

Frankfurt cumulative
Frankfurt serves locally

Frankfurt redirect ��to London�
London serves locally

Frankfurt redirects�

Figure 11: Kurma adapts to detected performance interference
by selecting appropriate SLO curves and adjusting its request
redirection rates.

The total rate of SLO violations for Frankfurt is a sum of SLO
violations for requests that are being served locally (orange dashed
line) and requests that are being redirected to London (green solid
line). Note, due to WAN latency between two datacenters, requests
redirected from Frankfurt to London have a higher rate of SLO
violations than requests that originated and are served in London
approximately 1.2% and 0.5% respectively at the 4 minutes mark.

Fast and Accurate Load Balancing

for Geo-Distributed Storage Systems SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Kurma was able to adapt to (externally) detected interference and
adjusted its selection of SLO curve for Frankfurt, consequently it
was able to greatly reduce the rate of SLO violations in Frankfurt
while marginally increasing the rate of SLO violations in London.

Alternatively, to account for performance variability associated
with multitenancy in clouds, Kurma could use multiple approaches:
rely on performance isolation [9], rate control [102], smart resource
controller [55, 63, 72], deploying on dedicated VM instances [5], or
dynamically rebuild SLO curves through VM isolation and online
re-profiling [46, 69]. We leave to future work incrementally adapting
and rebuilding SLO curves.

7.1.5 How Well Can Kurma Scale? Kurma computes its
model sufficiently fast for today’s scale of several to ten datacenters
per provider; solving the model for 5 datacenters using a load
balancing quantum of 1% (default) requires a median computation
time under 10 s, while solving for 8 datacenters with quantum of 8%
takes 1 s without inflating SLO violations. Full details are available
in [20]. Deployments with higher densities of datacenters will likely
still have a limited number of data centers that theoretically allow for
the SLO to be met, thus we claim that Kurma will have no difficulty
addressing future needs even in its current form.

7.2 How well can Kurma reduce cost?
Kurma can reduce the cost of running a service by avoiding excessive
global over-provisioning. Specifically, it attempts to redirect load
away from a datacenter before it becomes overloaded and would
require scaling out. In this section, we leverage simulations to
evaluate potential cost savings achievable using KurmaCost and
KurmaPerf models. We utilize our previous testbed settings with
three datacenters and use static inter-datacenter WAN latencies,
i.e., without routing changes and network congestion. We selected
continuous 30-days of workload traces.10

We assume the presence of a threshold based elastic controller
in each datacenter (e.g., EC2 Auto Scaling[7]). When the incoming
load in a given datacenter exceeds a threshold that matches 5%
SLO violations, the controller adds an additional VM. The actual
threshold values were obtained during our offline profiling (see §4).
We configured the controller to operate at the granularity of one
minute (as suggested by Amazon EC2 [8]). Thus, for every minute
of the trace, we estimate the expected rate of SLO violations, pass
this information to the elastic controller that subsequently makes a
scaling decision on a per datacenter level.

The operating cost, for each evaluated technique, was computed
as a sum of the costs of VM provisioning (1 VM costing $0.133/hour)
and inter-datacenter WAN traffic (costing $0.01/GB).11 The total
cost of WAN traffic was computed as a product of the total number of
redirected requests and the average request/response size measured
experimentally (375 bytes in our setup).
Evaluated techniques. As an upper bound for operating costs
we used the AllLocal strategy where each datacenter has to serve
all incoming requests locally without redirects. Cost savings were
calculated relative to this upper bound. For the lower bound we
compute the VM provisioning in the AllShared setting where all load
can be shared amongst datacenters without any penalty for WAN
10Days 34-64 from [2], scaled up for a cluster of 5 VMs per datacenter.
11For this analysis, we ignore the cost of gossiping traffic as it is negligible.

latency or costs for redirected traffic. While this is not achievable in
practice, it puts the other techniques into perspective.

In contrast, before triggering the elastic controller, both of
Kurma’s models try to distribute the load amongst datacenters such
that their corresponding objectives are achieved (i.e., minimizing
global SLO violations and bounding SLO violations at 5% margin in
each datacenter). When either model would exceed the SLO target,
the elastic controller scales up the overloaded datacenter.

Today, the minimum billing period from third-party cloud
providers is 1 minute [1, 42, 65]. However, depending on the type of
service and the size of a VM’s state, it might be impossible to turn
on/off VMs at such a high frequency. Therefore, for completeness
we performed evaluations using minimum billing periods of 1 and
60 minutes. For each configuration, we report average savings per
day over a 30 day period.

Fig. 12 shows the results for 1 minute billing interval. This
is considered a worst case scenario for Kurma’s relative savings
given that VM allocations can be more flexibly provisioned to
accommodate changes in workload. KurmaCost is only 7% off
from the absolute lower bound — that assumes that all datacenters
are co-located. With a 60-minute billing interval (figure excluded
for brevity), KurmaPerf can reduce costs by up to 15%, while
KurmaCost can reduce costs by up to 17% and this is only 6%
from maximum attainable savings.

To
ta

l C
os

t [
U

S$
]

0

5

10

15

20
VM Provisioning Redirections

All Shared KurmaCost KurmaPerf All Local

21%
savings

14%
savings

8%
savings

0%
savings

Figure 12: Total cost of provisioning VMs and redirecting
requests for 24-hours (averaged over 30 days), minimum billing
period is 1 minute. KurmaCost is only 7% off from the maximal
attainable savings.

Currently, KurmaCost considers uniform cost for inter-datacenter
WAN traffic and uniform cost of computation in each datacenter.
However, these costs could vary depending on the datacenters’
locations, the time of a day, and electricity sources currently available
to each datacenter[61, 77, 81]. By considering these costs as a set
of additional parameters, Kurma’s model can easily be extended to
cover such pricing cases.

8 LIMITATIONS
Predictable service time distribution. Kurma inherently assumes
predictable, low variance service time of the target system, such
that it is possible to establish a relationship between the rate of
request arrival and the rate of SLO violations. If the variance of
service time is too high, then the estimate of SLO curve will not
be accurate, leading to suboptimal performance (i.e., redirecting

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA K. Bogdanov et al.

too many or too few of requests). For example, the fan-out of a
search query might be unknown apriori making it difficult to derive
expectations about query completion time. For other setups, the
variance could be a consequence of the system’s software delays. In
Cassandra, garbage collectors can cause unexpected stalls, resulting
in a high service time variance. We address this issue by deploying
Cassandra with Zing JVM and its pauseless garbage collector [91].
Our results show that even with Java we can get good results. We
expect that systems that show lower variance in service times (e.g.,
RAM based caches and systems written in native programming
languages), Kurma should be able to operate even better.

Common redundancy techniques such as request duplication [95,
98] and speculative retries [10], can also be used with storage
systems to reduce latency variance. We argue that such methods can
be layered on-top of Kurma to improve service time predictability,
which goes hand in hand with Kurma’s load balancing performance.

9 DISCUSSION
How general is Kurma’s design? Even though this paper’s focus
was mainly on using key-value store deployed across geo-distributed
datacenters, we believe that the mechanism for estimating the
expected rate of SLO violations for redirected requests used in
Kurma is fairly generic and can be used for other applications and
deployments. Specifically, utilizing Kurma for load balancing can be
advantageous for services whose communication delays and service
times are of comparable orders of magnitudes.
How well can Kurma perform under strong consistency? Our
current prototype assumes services with eventual consistency
— which is a common use-case today [50, 92, 94]. Kurma
performs load balancing by carefully choosing requests’ split
ratios among available datacenters. Strong consistency, typically,
requires simultaneous communication with multiple replicas, which
naturally limits available choices and could reduce the benefits of
load balancing in general. Moreover, the effect of stragglers can
obscure some of the benefits attained from accurate geographic load
balancing.
Can Kurma work without full replication? Kurma is inherently
aware of keyspaces’ replication policies and assumes that all data
is replicated at every datacenter. This allows it to direct requests
towards datacenters that can serve clients’ requests while at the
same time adhere to the redirection rates provided by the model.
However, having data (e.g., key or row) replicated only in a subset of
datacenters would limit the number of requests that can be redirected
between a source and destination datacenters depending on the mix
of clients’ requests arriving at the source datacenter.

While not currently implemented, Kurma’s model can be further
extended to support such replication policies via an additional
constraint on the request redirection matrix �i j . Specifically, each
value �i j would be bounded by the number of the arriving requests
at i that can be served at j.
Can Kurma operate under failures? Kurma relies on the presence
of an external mechanism to detect failures and inform distributed
instances of Kurma.12 At run-time, Kurma’s model handles changes
in the number of datacenters and changes to datacenters’ capacities

12 Current Kurma’s implementation utilizes Datastax CQL driver that maintains a list of
alive Cassandra nodes.

(i.e., the number of servers in each datacenter). For example, if a
server fails, all distributed Kurma instances switch to an SLO curve
that matches the reduced capacity of that datacenter. Alternatively,
if an entire datacenter becomes unavailable or network partitioning
occurs, Kurma excludes inaccessible datacenters when solving
its model. Thus, no redirection rates are assigned to unavailable
datacenters.
Can Kurma operate with different workload mixes? Service
time distribution of a storage system can change non-negligibly
depending on the workload’s characteristics, e.g., request sizes and
read/write ratio. We assume, that in practice these characteristics
will be known for the most common workloads, making it possible
to incorporate them into the initial offline profiling (see Section 4.1).
At run-time, Kurma can then react to changes in workload mixes by
simply switching between pre-computed SLO curves as necessary.

In §7.1.2 we showed that Kurma can operate well with two distinct
types of request (namely reads and writes). We believe that the
dimensionality of SLO curves could be expanded to cover request
size distributions. Operating under variable request sizes is left as
future work.
How can Kurma be deployed on large-scale systems? Kurma is
designed to be logically centralized at a datacenter level. However,
the current prototype does not address coordination among multiple
intra-datacenter instances of Kurma, as would be necessary for large
scale production deployments. To achieve this, multiple Kurma
instances, deployed within one datacenter, would need to perform
distributed rate limiting towards the backend tier. Existing works in
this domain, such as [78, 88] could be integrated with Kurma. We
leave integration and evaluation of these techniques for future work.

10 CONCLUSION
Kurma is the first system that takes into account the actual
service time and inter-datacenter WAN latency distributions to
accurately estimate the rate of SLO violations for requests redirected
across geo-distributed datacenters. Kurma realizes a decentralized
geo-distributed load balancing system that quickly performs
accurate, global load balancing decisions within a few seconds,
enabling it to rapidly react to changes in load. By operating at the
granularity of seconds, Kurma can work in tandem with modern
elastic controllers, thereby reducing over-provisioning and SLO
violations incurred during provisioning delays. We demonstrated
that our techniques can operate with both reads and writes and can
optionally reduce the cost of running a service.

Acknowledgments. We thank Göran Andersson and Christian
Schulte for their help with designing and reviewing Kurma’s
optimization model. We are grateful to Marco Chiesa for his
comments on earlier drafts of this paper. This work is financially
supported by the Swedish Foundation for Strategic Research. This
project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 770889). Waleed Reda
was supported by a fellowship from the Erasmus Mundus Joint
Doctorate in Distributed Computing (EMJD-DC) program funded
by the European Commission (EACEA) (FPA 2012-0030).

Fast and Accurate Load Balancing

for Geo-Distributed Storage Systems SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

REFERENCES
[1] Amazon EC2. http://aws.amazon.com/ec2/ Accessed 28-Aug-2018.
[2] The Internet Traffic Archive. http://ita.ee.lbl.gov/html/contrib/WorldCup.html

Accessed 01-Feb-2018.
[3] ADAN, I., AND RESING, J. Queueing theory. Eindhoven University of

Technology Eindhoven, 2002.
[4] AGARWAL, S., DUNAGAN, J., JAIN, N., SAROIU, S., WOLMAN, A., AND

BHOGAN, H. Volley: Automated Data Placement for Geo-Distributed Cloud
Services. In Proceedings of the 7th USENIX Conference on Networked Systems

Design and Implementation (Berkeley, CA, USA, 2010), NSDI’10, USENIX
Association, pp. 2–2.

[5] AMAZON. Amazon EC2 Dedicated Instances. https://aws.amazon.com/ec2/
purchasing-options/dedicated-instances/ Accessed 28-Aug-2018.

[6] AMAZON. Amazon Elastic Block Store. https://aws.amazon.com/ebs/details/
Accessed 28-Aug-2018.

[7] AMAZON. EC2 Auto Scaling. https://docs.aws.amazon.com/autoscaling/ec2/
userguide/what-is-amazon-ec2-auto-scaling.html Accessed 01-Jun-2017.

[8] AMAZON. Target tracking scaling policies. http://goo.gl/fzjZ92 Accessed 01-
Jun-2017.

[9] ANGEL, S., BALLANI, H., KARAGIANNIS, T., O’SHEA, G., AND THERESKA,
E. End-to-end Performance Isolation Through Virtual Datacenters. In 11th

USENIX Symposium on Operating Systems Design and Implementation (OSDI

14) (2014), pp. 233–248.
[10] APACHE. Cassandra. http://cassandra.apache.org/ Accessed 28-Aug-2018.
[11] APACHE. Cassandra, Dynamic Snitching. https://docs.datastax.com/

en/cassandra/3.0/cassandra/architecture/archSnitchDynamic.html?hl=
dynamic%2Csnitch Accessed 20-Jan-2018.

[12] ARDAGNA, D., CASOLARI, S., COLAJANNI, M., AND PANICUCCI, B. Dual
time-scale distributed capacity allocation and load redirect algorithms for cloud
systems. Journal of Parallel and Distributed Computing 72, 6 (2012), 796–808.

[13] ARDEKANI, M. S., AND TERRY, D. B. A Self-Configurable Geo-Replicated
Cloud Storage System. In 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 14) (2014), pp. 367–381.
[14] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R. H.,

KONWINSKI, A., LEE, G., PATTERSON, D. A., RABKIN, A., STOICA, I.,
ET AL. Above the Clouds: A Berkeley View of Cloud Computing. Tech.
rep., Technical Report UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, 2009.

[15] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND PALECZNY, M.
Workload Analysis of a Large-Scale Key-Value Store. In ACM SIGMETRICS

Performance Evaluation Review (2012), vol. 40, ACM, pp. 53–64.
[16] BARB DARROW. Amazon and Google Continue Cloud Arms Race With

New Data Centers. 30-Sep-2016. Fortune.com. http://fortune.com/2016/09/
30/amazon-google-add-data-centers/ Accessed 01-May-2018.

[17] BESSANI, A., CORREIA, M., QUARESMA, B., ANDRÉ, F., AND SOUSA,
P. DepSky: Dependable and Secure Storage in a Cloud-of-Clouds. ACM

Transactions on Storage (TOS) 9, 4 (2013), 12.
[18] BOGDANOV, K. Reducing Long Tail Latencies in Geo-Distributed Systems.

Licentiate Thesis, KTH Royal Institute of Technology, 2016. ISBN: 978-91-
7729-160-2 URN: urn:nbn:se:kth:diva-194729.

[19] BOGDANOV, K. Enabling Fast and Accurate Run-Time Decisions in Geo-

Distributed Systems: Better Achieving Service Level Objectives. Doctoral
Dissertation, KTH Royal Institute of Technology, 2018. Planned for the Fall
2018.

[20] BOGDANOV, K., REDA, W., MAGUIRE JR, G. Q., KOSTIĆ, D., AND
CANINI, M. Kurma: Fast and Efficient Load Balancing for Geo-Distributed

Storage Systems (Technical Report). Technical report, KTH Royal Institute of
Technology, 2018. http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%
3Adiva-222289.

[21] BRUTLAG, J. Speed matters for Google web search. Google. June (2009). https://
services.google.com/fh/files/blogs/googledelayexp.pdf Accessed 28-Aug-2018.

[22] BRYANT, R., TUMANOV, A., IRZAK, O., SCANNELL, A., JOSHI, K.,
HILTUNEN, M., LAGAR-CAVILLA, A., AND DE LARA, E. Kaleidoscope:
Cloud Micro-Elasticity via VM state Coloring. In Proceedings of the sixth

conference on Computer systems (2011), ACM, pp. 273–286.
[23] BUYYA, R., RANJAN, R., AND CALHEIROS, R. N. Intercloud: Utility-Oriented

Federation of Cloud Computing Environments for Scaling of Application
Services. In International Conference on Algorithms and Architectures for

Parallel Processing (2010), Springer, pp. 13–31.
[24] CALLAHAN, T., ALLMAN, M., AND RABINOVICH, M. On modern DNS

behavior and properties. ACM SIGCOMM Computer Communication Review 43,
3 (2013), 7–15.

[25] CARDELLINI, V., COLAJANNI, M., AND YU, P. S. Geographic Load Balancing
for Scalable Distributed Web Systems. In Modeling, Analysis and Simulation of

Computer and Telecommunication Systems, 2000. Proceedings. 8th International

Symposium on (2000), IEEE, pp. 20–27.

[26] CARDELLINI, V., COLAJANNI, M., AND YU, P. S. Request Redirection
Algorithms for Distributed Web Systems. IEEE Transactions on Parallel and

Distributed Systems 14, 4 (2003), 355–368.
[27] CHANDRA, A., GONG, W., AND SHENOY, P. Dynamic Resource Allocation

for Shared Data Centers Using Online Measurements. ACM SIGMETRICS

Performance Evaluation Review 31, 1 (2003), 300–301.
[28] CHANDRASEKARAN, B., SMARAGDAKIS, G., BERGER, A., LUCKIE, M.,

AND NG, K.-C. A Server-to-Server View of the Internet. In Proceedings of

the 11th International Conference on emerging Networking EXperiments and

Technologies (Heidelberg, Germany, December 2015), CoNEXT ’15, ACM,
p. 40.

[29] COCKCROFT, A., AND SHEAHAN, D. Benchmarking Cassandra Scalability on
AWS over a million writes per second. 1-Nov-2011. Netflix Technology Blog.
https://goo.gl/Gtn2XH Accessed 28-Aug-2018.

[30] COLAJANNI, M., YU, P. S., AND CARDELLINI, V. Dynamic Load Balancing
in Geographically Distributed Heterogeneous Web Servers. In Distributed

Computing Systems, 1998. Proceedings. 18th International Conference on (1998),
IEEE, pp. 295–302.

[31] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R., AND
SEARS, R. Benchmarking cloud serving systems with YCSB. In Proceedings of

the 1st ACM symposium on Cloud computing (2010), ACM, pp. 143–154.
[32] CORMODE, G., SHKAPENYUK, V., SRIVASTAVA, D., AND XU, B. Forward

Decay: A Practical Time Decay Model for Streaming Systems. In Data

Engineering, 2009. ICDE’09. IEEE 25th International Conference on (2009),
IEEE, pp. 138–149.

[33] DATASTAX. Apache Cassandra Drivers. https://academy.datastax.com/
download-drivers Accessed 1-Oct-2017.

[34] DEAN, J., AND BARROSO, L. A. The Tail at Scale. Communications of the

ACM 56, 2 (2013), 74–80.
[35] DILLEY, J., MAGGS, B., PARIKH, J., PROKOP, H., SITARAMAN, R., AND

WEIHL, B. Globally Distributed Content Delivery. IEEE Internet Computing 6,
5 (2002), 50–58.

[36] EISENBUD, D. E., YI, C., CONTAVALLI, C., SMITH, C., KONONOV, R.,
MANN-HIELSCHER, E., CILINGIROGLU, A., CHEYNEY, B., SHANG, W., AND
HOSEIN, J. D. Maglev: A Fast and Reliable Software Network Load Balancer.
In 13th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 16) (2016), USENIX Association, pp. 523–535.
[37] EUGSTER, P. T., GUERRAOUI, R., KERMARREC, A.-M., AND MASSOULIÉ,

L. Epidemic Information Dissemination in Distributed Systems. Computer 37, 5
(2004), 60–67.

[38] GANDHI, A., HARCHOL-BALTER, M., RAGHUNATHAN, R., AND KOZUCH,
M. A. Autoscale: Dynamic, Robust Capacity Management for Multi-Tier Data
Centers. ACM Transactions on Computer Systems (TOCS) 30, 4 (2012), 14.

[39] GANDHI, R., LIU, H. H., HU, Y. C., LU, G., PADHYE, J., YUAN, L., AND
ZHANG, M. Duet: Cloud Scale Load Balancing with Hardware and Software.
ACM SIGCOMM Computer Communication Review 44, 4 (2015), 27–38.

[40] GMACH, D., ROLIA, J., CHERKASOVA, L., AND KEMPER, A. Workload
Analysis and Demand Prediction of Enterprise Data Center Applications.
In Workload Characterization, 2007. IISWC 2007. IEEE 10th International

Symposium on (2007), IEEE, pp. 171–180.
[41] GONG, Z., GU, X., AND WILKES, J. PRESS: PRedictive Elastic ReSource

Scaling for cloud systems. In 2010 International Conference on Network and

Service Management (2010), IEEE, pp. 9–16.
[42] GOOGLE. Google compute engine pricing. https://cloud.google.com/compute/

pricing Accessed 28-Aug-2018.
[43] GRAY, W. D., AND BOEHM-DAVIS, D. A. Milliseconds matter: An introduction

to microstrategies and to their use in describing and predicting interactive
behavior. Journal of Experimental Psychology: Applied 6, 4 (2000), 322.

[44] GUO, T., SHENOY, P., AND HACIGÜMÜS, H. H. Geoscale: Providing Geo-
Elasticity in Distributed Clouds. In Cloud Engineering (IC2E), 2016 IEEE

International Conference on (2016), IEEE, pp. 123–126.
[45] HAJJAT, M., SHANKARANARAYANAN, P., MALTZ, D., RAO, S., AND

SRIPANIDKULCHAI, K. Dynamic Request Splitting for Interactive Cloud
Applications. IEEE Journal on Selected Areas in Communications 31, 12 (2013),
2722–2737.

[46] HERODOTOU, H., DONG, F., AND BABU, S. No One (Cluster) Size Fits All:
Automatic Cluster Sizing for Data-intensive Analytics. In Proceedings of the

2nd ACM Symposium on Cloud Computing (2011), ACM, p. 18.
[47] HØILAND-JØRGENSEN, T., AHLGREN, B., HURTIG, P., AND BRUNSTROM,

A. Measuring Latency Variation in the Internet. In Proceedings of the

12th International on Conference on emerging Networking EXperiments and

Technologies (2016), ACM, pp. 473–480.
[48] IAN PAUL, P. Jackson’s Death a Blow to the Internet. http://www.pcworld.com/

article/167435/jacksondeathblowtointernet.html Accessed 28-Aug-2018.
[49] JUNG, J., KRISHNAMURTHY, B., AND RABINOVICH, M. Flash crowds and

denial of service attacks: Characterization and implications for CDNs and web
sites. In Proceedings of the 11th international conference on World Wide Web

(2002), ACM, pp. 293–304.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA K. Bogdanov et al.

[50] KALANTZIS, C. Eventual Consistency != Hopeful Consistency. Talk at
Cassandra Summit, 2013. https://www.youtube.com/watch?v=A6qzxHE3EU.

[51] KALYVIANAKI, E., CHARALAMBOUS, T., AND HAND, S. Self-adaptive
and self-configured CPU resource provisioning for virtualized servers using
Kalman filters. In Proceedings of the 6th international conference on Autonomic

computing (2009), ACM, pp. 117–126.
[52] KANIZO, Y., RAZ, D., AND ZLOTNIK, A. Efficient Use of Geographically

Spread Cloud Resources. In Cluster, Cloud and Grid Computing (CCGrid), 2013

13th IEEE/ACM International Symposium on (2013), IEEE, pp. 450–457.
[53] KEMPE, D., DOBRA, A., AND GEHRKE, J. Gossip-based computation of

aggregate information. In Foundations of Computer Science, 2003. Proceedings.

44th Annual IEEE Symposium on (2003), IEEE, pp. 482–491.
[54] KRIOUKOV, A., MOHAN, P., ALSPAUGH, S., KEYS, L., CULLER, D., AND

KATZ, R. NapSAC: Design and Implementation of a Power-Proportional Web
Cluster. ACM SIGCOMM computer communication review 41, 1 (2011), 102–
108.

[55] LANG, W., SHANKAR, S., PATEL, J. M., AND KALHAN, A. Towards
Multi-Tenant Performance SLOs. IEEE Transactions on Knowledge and Data

Engineering 26, 6 (2014), 1447–1463.
[56] LI, C., PORTO, D., CLEMENT, A., GEHRKE, J., PREGUIÇA, N. M., AND

RODRIGUES, R. Making Geo-Replicated Systems Fast as Possible, Consistent
when Necessary. In OSDI (2012), vol. 12, pp. 265–278.

[57] LIM, H. C., BABU, S., AND CHASE, J. S. Automated control for elastic storage.
In Proceedings of the 7th international conference on Autonomic computing

(2010), ACM, pp. 1–10.
[58] LIN, M., WIERMAN, A., ANDREW, L. L., AND THERESKA, E. Dynamic

right-sizing for power-proportional data centers. IEEE/ACM Transactions on

Networking (TON) 21, 5 (2013), 1378–1391.
[59] LINDEN, G. Make Data Useful. http://goo.gl/DGKkzv. Slides for a talk for the

course Data Mining (CS345) at Stanford University. Accessed 28-Aug-2018.
[60] LIU, H. H., VISWANATHAN, R., CALDER, M., AKELLA, A., MAHAJAN, R.,

PADHYE, J., AND ZHANG, M. Efficiently Delivering Online Services over
Integrated Infrastructure. In 13th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 16) (2016), pp. 77–90.
[61] LIU, Z., LIN, M., WIERMAN, A., LOW, S. H., AND ANDREW, L. L. Greening

Geographical Load Balancing. In Proceedings of the ACM SIGMETRICS joint

international conference on Measurement and modeling of computer systems

(2011), ACM, pp. 233–244.
[62] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDERSEN, D. G.

Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage
with COPS. In Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles (2011), ACM, pp. 401–416.
[63] MACE, J., BODIK, P., FONSECA, R., AND MUSUVATHI, M. Retro: Targeted

Resource Management in Multi-tenant Distributed Systems. In NSDI (2015),
pp. 589–603.

[64] MADHYASTHA, H. V., ISDAL, T., PIATEK, M., DIXON, C., ANDERSON, T.,
KRISHNAMURTHY, A., AND VENKATARAMANI, A. iPlane: An Information
Plane for Distributed Services. In Proceedings of the 7th symposium on Operating

systems design and implementation (2006), USENIX Association, pp. 367–380.
[65] MICROSOFT. Microsoft Azure - Linux Virtual Machines Pricing. https:

//azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/ Accessed
28-Aug-2018.

[66] MILLS, D. L. Internet time synchronization: The network time protocol.
Communications, IEEE Transactions on 39, 10 (1991), 1482–1493.

[67] MITZENMACHER, M. How Useful Is Old Information? IEEE Transactions on

Parallel and Distributed Systems 11, 1 (2000), 6–20.
[68] NETHERCOTE, N., STUCKEY, P. J., BECKET, R., BRAND, S., DUCK, G. J.,

AND TACK, G. MiniZinc: Towards a standard CP modelling language. In
International Conference on Principles and Practice of Constraint Programming

(2007), Springer, pp. 529–543.
[69] NGUYEN, H., SHEN, Z., GU, X., SUBBIAH, S., AND WILKES, J. AGILE:

Elastic Distributed Resource Scaling for Infrastructure-as-a-Service. In
Proceedings of the 10th International Conference on Autonomic Computing

(ICAC 13) (2013), pp. 69–82.
[70] NOVAKOVIC, D., VASIC, N., NOVAKOVIC, S., KOSTIC, D., AND BIANCHINI,

R. Deepdive: Transparently Identifying and Managing Performance Interference
in Virtualized Environments. In Proceedings of the 2013 USENIX Annual

Technical Conference (2013), no. EPFL-CONF-185984.
[71] OLTEANU, V., AGACHE, A., VOINESCU, A., AND RAICIU, C. Stateless

datacenter load-balancing with beamer. In 15th USENIX Symposium on

Networked Systems Design and Implementation (NSDI) (2018), vol. 18, pp. 125–
139.

[72] PADALA, P., HOU, K.-Y., SHIN, K. G., ZHU, X., UYSAL, M., WANG, Z.,
SINGHAL, S., AND MERCHANT, A. Automated Control of Multiple Virtualized
Resources. In Proceedings of the 4th ACM European conference on Computer

systems (2009), ACM, pp. 13–26.
[73] PADALA, P., SHIN, K. G., ZHU, X., UYSAL, M., WANG, Z., SINGHAL, S.,

MERCHANT, A., AND SALEM, K. Adaptive control of virtualized resources in

utility computing environments. In ACM SIGOPS Operating Systems Review

(2007), vol. 41, ACM, pp. 289–302.
[74] PANG, J., AKELLA, A., SHAIKH, A., KRISHNAMURTHY, B., AND SESHAN,

S. On the Responsiveness of DNS-based Network Control. In Proceedings of

the 4th ACM SIGCOMM conference on Internet measurement (2004), ACM,
pp. 21–26.

[75] PATEL, P., BANSAL, D., YUAN, L., MURTHY, A., GREENBERG, A., MALTZ,
D. A., KERN, R., KUMAR, H., ZIKOS, M., WU, H., ET AL. Ananta: Cloud
Scale Load Balancing. In ACM SIGCOMM Computer Communication Review

(2013), vol. 43, ACM, pp. 207–218.
[76] PUCHA, H., ZHANG, Y., MAO, Z. M., AND HU, Y. C. Understanding Network

Delay Changes Caused by Routing Events. In ACM SIGMETRICS Performance

Evaluation Review (2007), vol. 35, ACM, pp. 73–84.
[77] QURESHI, A., WEBER, R., BALAKRISHNAN, H., GUTTAG, J., AND MAGGS,

B. Cutting the electric bill for internet-scale systems. In ACM SIGCOMM

computer communication review (2009), vol. 39, ACM, pp. 123–134.
[78] RAGHAVAN, B., VISHWANATH, K., RAMABHADRAN, S., YOCUM, K., AND

SNOEREN, A. C. Cloud Control with Distributed Rate Limiting. ACM

SIGCOMM Computer Communication Review 37, 4 (2007), 337–348.
[79] RANJAN, S. Request redirection for dynamic content. In Content Delivery

Networks. Springer, 2008, pp. 155–179.
[80] RANJAN, S., KARRER, R., AND KNIGHTLY, E. Wide Area Redirection of

Dynamic Content by Internet Data Centers. In INFOCOM 2004. Twenty-third

AnnualJoint Conference of the IEEE Computer and Communications Societies

(2004), vol. 2, IEEE, pp. 816–826.
[81] RAO, L., LIU, X., XIE, L., AND LIU, W. Minimizing Electricity Cost:

Optimization of Distributed Internet Data Centers in a Multi-Electricity-Market
Environment. In INFOCOM, 2010 Proceedings IEEE (2010), IEEE, pp. 1–9.

[82] REDA, W., AND BOGDANOV, K. L. Open Loop YCSB source code. https:
//github.com/kirillsc/ycsb/tree/openloop.

[83] ROUSSOPOULOS, M., AND BAKER, M. Practical load balancing for content
requests in peer-to-peer networks. Distributed Computing 18, 6 (2006), 421–434.

[84] SCHULTE, C., TACK, G., AND LAGERKVIST, M. Z. Modeling and programming
with gecode, 2010. http://www.gecode.org/doc-latest/MPG.pdf Accessed 17-
Jan-2017.

[85] SHANKARANARAYANAN, P., SIVAKUMAR, A., RAO, S., AND TAWARMALANI,
M. Performance Sensitive Replication in Geo-Distributed Cloud Datastores. In
2014 44th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks (2014), IEEE, pp. 240–251.
[86] SHEN, Z., SUBBIAH, S., GU, X., AND WILKES, J. CloudScale: Elastic

Resource Scaling for Multi-Tenant Cloud Systems. In Proceedings of the 2nd

ACM Symposium on Cloud Computing (2011), ACM, p. 5.
[87] SOUDERS, S. Velocity and the Bottom Line. http://radar.oreilly.com/2009/07/

velocity-making-your-site-fast.html Accessed 1-May-2018.
[88] STANOJEVI, R., AND SHORTEN, R. Fully Decentralized Emulation of Best-

Effort and Processor Sharing Queues. ACM SIGMETRICS Performance

Evaluation Review 36, 1 (2008), 383–394.
[89] SURESH, P. L., CANINI, M., SCHMID, S., AND FELDMANN, A. C3: Cutting

Tail Latency in Cloud Data Stores via Adaptive Replica Selection. In NSDI

(2015), pp. 513–527.
[90] SVERDLIK, Y. Google to build and lease data centers in big cloud expansion.

22-apr-2016. Data Center Knowledge. http://goo.gl/hkxmXQ Accessed 1-May-
2018.

[91] TENE, G., IYENGAR, B., AND WOLF, M. C4: The Continuously Concurrent
Compacting Collector. ACM SIGPLAN Notices 46, 11 (2011), 79–88.

[92] TERRY, D. B., PRABHAKARAN, V., KOTLA, R., BALAKRISHNAN, M.,
AGUILERA, M. K., AND ABU-LIBDEH, H. Consistency-Based Service Level
Agreements for Cloud Storage. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles (2013), ACM, pp. 309–324.
[93] THORSTEN VON EICKEN. Animoto’s Facebook scale-up, 23-Apr-2008. Right

Scale. http://goo.gl/UDNXS9 Accessed 28-Aug-2018.
[94] VENKATARAMANI, V., AMSDEN, Z., BRONSON, N., CABRERA III, G.,

CHAKKA, P., DIMOV, P., DING, H., FERRIS, J., GIARDULLO, A., HOON,
J., ET AL. TAO: How Facebook Serves the Social Graph. In Proceedings of the

2012 ACM SIGMOD International Conference on Management of Data (2012),
ACM, pp. 791–792.

[95] VULIMIRI, A., GODFREY, P. B., MITTAL, R., SHERRY, J., RATNASAMY, S.,
AND SHENKER, S. Low Latency via Redundancy. In Proceedings of the ninth

ACM conference on Emerging networking experiments and technologies (2013),
ACM, pp. 283–294.

[96] WENDELL, P., JIANG, J. W., FREEDMAN, M. J., AND REXFORD, J. Donar:
Decentralized Server Selection for Cloud Services. ACM SIGCOMM Computer

Communication Review 41, 4 (2011), 231–242.
[97] WU, Z., BUTKIEWICZ, M., PERKINS, D., KATZ-BASSETT, E., AND

MADHYASTHA, H. V. SPANStore: Cost-Effective Geo-Replicated Storage
Spanning Multiple Cloud Services. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles (2013), ACM, pp. 292–308.

Fast and Accurate Load Balancing

for Geo-Distributed Storage Systems SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

[98] WU, Z., YU, C., AND MADHYASTHA, H. V. CosTLO: Cost-Effective
Redundancy for Lower Latency Variance on Cloud Storage Services. In Proc.

12th USENIX Symposium on Networked Systems Design and Implementation

(NSDI) (2015).
[99] XU, W., ZHU, X., SINGHAL, S., AND WANG, Z. Predictive Control for

Dynamic Resource Allocation in Enterprise Data Centers. In Network Operations

and Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP (2006), IEEE,
pp. 115–126.

[100] ZHANG, Q., CHERKASOVA, L., AND SMIRNI, E. A Regression-Based Analytic
Model for Dynamic Resource Provisioning of Multi-Tier Applications. In
Autonomic Computing, 2007. ICAC’07. Fourth International Conference on

(2007), IEEE, pp. 27–27.
[101] ZHOU, Z., LIU, F., XU, Y., ZOU, R., XU, H., LUI, J. C., AND JIN, H. Carbon-

Aware Load Balancing for Geo-Distributed Cloud Services. In 2013 IEEE 21st

International Symposium on Modelling, Analysis and Simulation of Computer

and Telecommunication Systems (2013), IEEE, pp. 232–241.
[102] ZHU, T., KOZUCH, M. A., AND HARCHOL-BALTER, M. WorkloadCompactor:

Reducing Datacenter Cost While Providing Tail Latency SLO Guarantees. In
Proceedings of the 2017 Symposium on Cloud Computing (2017), ACM, pp. 598–
610.

[103] ZHU, X., YOUNG, D., WATSON, B. J., WANG, Z., ROLIA, J., SINGHAL, S.,
MCKEE, B., HYSER, C., GMACH, D., GARDNER, R., ET AL. 1000 islands: an
integrated approach to resource management for virtualized data centers. Cluster

Computing 12, 1 (2009), 45–57.

