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ABSTRACT
GPUs are emerging as the most popular accelerator for many
applications, powering the core of machine learning applications.
In networked GPU-accelerated applications input & output data
typically traverse the CPU and the OS network stack multiple
times, getting copied across the system’s main memory. These
transfers increase application latency and require expensive CPU
cycles, reducing the system’s efficiency, and increasing the overall
response times. These inefficiencies become of greater importance
in latency-bounded deployments, or with high throughput, where
copy times could quickly inflate the response time of modern GPUs.
We leverage the efficiency and kernel-bypass benefits of RDMA to
transfer data in and out of GPUs without using any CPU cycles or
synchronization. We demonstrate the ability of modern GPUs to
saturate a 100-Gbps link, and evaluate the network processing time
in the context of an inference serving application.
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1 INTRODUCTION
Many companies already run large numbers of inferences [23, 39],
which represents the major cost in many AI-based applications
deployments [3, 12]. Most of these applications run on commodity
hardware equipped with several Graphics Processing Units (GPUs),
as modern trends suggest [15]. With the growth in data volumes,
advancements in networking speeds, and the increase processing
capabilities of GPUs, the cost of data transfers in these scenarios
is becoming increasingly important [5, 18], although it is highly
overlooked with respect to other aspects of these technologies.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EdgeSys ’24, April 22, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0539-7/24/04.
https://doi.org/10.1145/3642968.3654820

While this performance gap introduces limitations in all GPU-
accelerated applications, this is exacerbated in bandwidth-intensive
ones, e.g., in video-related use-cases.

The importance of this issue will become more prominent with
the deployment of GPU-demanding applications at the edge, close
to large groups of users actively generating and consuming vast
amounts of data. In fact, positioning computational resources
closer to the end-users improves overall performance by reducing
latency and increasing availability. This is the case for Generative
AI (GenAI) videos (e.g., with OpenAI SORA [30]), as well as
Augmented Reality and Virtual Reality technologies. In these
scenarios, traditional offline compression techniques cannot be
used, making the need for an efficient data transport mechanism
paramount. Furthermore, GPU-driven GenAI videos use large
models, which in turn require powerful GPUs. Similarly, video
processing (e.g., transcoding) workloads might require GPUs from
particular vendors. All these reasons underscore the necessity for
a service architecture that seamlessly connects a scalable, user-
facing frontend to heterogeneous GPU inference servers through a
commodity network.

In these contexts, the ability to move data to and from GPUs
without needing direct CPU intervention is a key factor to
enable efficient device integration. This enables the deployment
of GPU-accelerated networked applications with little to no CPU
involvement, thereby maximizing throughput and efficiency. Edge
deployments favor cost-effective solutions; thus, being able to use
low-end CPUs or even bypassing them would be highly beneficial.
Given that power and cooling resources are often limited in
these setups, reallocating energy from CPUs dedicated to network
processing to GPUs can significantly enhance efficiency.

Remote Direct Memory Access (RDMA) technology can play
a prominent role because it can potentially eliminate CPU usage
beyond the basic initialization tasks. However, existing approaches
(e.g., GPUDirect [25] and GPUrdma [9]) cannot be directly applied
since they were designed for homogeneous, dedicated networking
and GPU equipment. In addition, they are geared for “collective”
style communication (e.g., AllReduce operations), rather than user-
facing inference serving.
Contributions. Our contributions are as follows:
• GPU-drivenRDMAnetworking.Wepropose the first, minimal
implementation to control RDMA data transfers directly from
GPUs, moving data directly between the network and the
GPU memory avoiding expensive memory copies. We focus on
commodity Ethernet and vanilla CUDA GPUs.

• Zero CPU usage during actual inference. Exploiting
the ability of self-launching CUDA kernels, we propose an
architecture to serve AI inferences without any CPU resources
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during runtime; therefore, the CPU is freed from any GPU-related
task, allowing it to be allocated for other processes.

We evaluate our contributions in the contest of a Machine Learning
(ML) inference serving scenario, showing the benefits of controlling
network transmissions directly from a GPU. Our solution bypasses
the costly CPU-GPU synchronizations and reduces response times
for common inference serving tasks by up to 50%. We demonstrate
that (𝑖) it is possible to run the RDMA stack on commodity GPUs,
(𝑖𝑖) our approach introduces negligible runtime overhead in the
GPU domain, (𝑖𝑖𝑖) no modification is needed in device drivers or
operating system kernel, and (𝑖𝑣) standard protocols and interfaces
could be used, fostering integration in already existing solutions.

2 BACKGROUND
The need to transfer ever-increasing data bandwidths, and
the spread of bandwidth-intensive applications, fostered the
development of alternative network stacks, with the aim of
enhancing the efficiency of networked applications [4]. In modern
datacenters, most of these approaches aim to bypass the kernel
network stack, by either (𝑖) using CPU cycles to poll packets from
the network (e.g., DPDK) or (𝑖𝑖) leveraging hardware accelerators
to deliver network packets directly to main memory. The most
common implementation of the second category is represented
by RDMA, which allows network hosts to exchange data (e.g.,
read/write memory regions) directly to each other’s memory space,
without CPU intervention [38].

2.1 RDMA Technology
Originally designed for High Performance Computing (HPC)
settings to speed up large-scale parallel computations over
InfiniBand, RDMA has emerged as an effective solution for
commodity Ethernet datacenter networks as well. This broader
application has been facilitated by enhancements in the Ethernet
standard that enable RDMA to work even in lossy networks [16, 35].
RDMA transactions occur between two RDMA-enabled NICs,
transporting data (e.g., content of memory areas) between them
over a specific network protocol (i.e., RoCE). These network packets
are generated and consumed directly by NICs, as configured
and instructed by the application. RDMA support has been
integrated into a wide range of commodity NICs, with software
support embedded in most operating systems. In Linux, RDMA
functionalities are provided through the rdma_core stack [1].
RDMA Verbs. RDMA communication is enabled by RDMA verbs,
the semantic units representing operations to be executed between
NICs involved in the RDMA communication. These verbs act as
direct extensions of DMA mechanisms, extending them beyond
the boundaries of individual machines. Verbs are implemented in
specialized hardware accelerators embedded in RDMA-enabled
NICs, called Processing Units (PUs). The operation of requesting a
transaction in the RDMA context is commonly referred as posting
a verb. Beside some complex functions that RDMA supports (e.g.,
atomic operations), RDMA verbs can be divided into 1-sided and
2-sided verbs. We mainly focus on the 1-sided verbs, which enable
the receiver (i.e., the server) to process data transfers without any
CPU involvement. All the transfers are carried out by the NICs’ PUs,
making it an effectivemethod for reducing CPU cycles consumption.

The twomain 1-sided verbs are READ andWRITE, allowing to fetch/
send data from/to a remote destination, respectively.
RDMA in practice. Applications trigger network data transfers
by instructing the NIC through a Work Request (WR), a data
structure that describes the specific verb to be executed. This WR
includes details such as memory addresses, the memory area size,
the type of verb, and additional flags that affect how the verb is
processed. The memory address of the WR, located in the system’s
main memory, is then transferred to the NIC by writing its address
into a specific PCIe register. To notify the NIC that a verb execution
is pending, a specific counter called the doorbell register is advanced.
In rdma_core, these steps are executed through a single API call (i.e.,
ibv_post_send), which typically requires constant time, regardless
of the data size to be transferred. The PUs in the NIC fetch the WR,
and then the memory areas specified in the WR. These memory
areas are in turn transferred to the remote party without any
alteration (i.e., the memory region is transmitted at byte-level)
and with minimal network encapsulation. On the receiving end,
when a verb from the NIC is received and all security checks are
passed (e.g., the memory addresses and requested operations are
valid), the data is transferred via DMA transactions directly into
the remote peer’s memory. Optionally, acknowledgements and
completion notifications may be issued to inform the sender or the
receiver that the transfer has been completed. RDMA includes basic
security mechanisms that allow to control whichmemory areas can
be accessed, how, and by whom. These boundaries are generally
configured during the initialization phase of the RDMA stack.

2.2 GPUs
GPUs1 and the NVIDIA CUDA architecture are the de facto industry
standard for AI workloads. The execution model of GPUs differs
from the traditional executionmodel of CPUs as they usually feature
a very large number of threads to execute each instruction [24]. The
CUDAprimitive execution unit is represented byCUDA cores, which
are grouped into Streaming Multiprocessors (SMs). Within each SM,
CUDA cores are further grouped into fixed subsets called warps,
with each thread assigned to execute on one or more of these warps.
This hardware design of CUDA cores implies that a GPU achieves
maximum efficiency when all 32 threads in a warp execute the same
instruction concurrently. Therefore, GPUs are especially well-suited
for large mathematical computation that can be split into smaller,
parallel tasks, e.g., matrix multiplications. GPU operations can be
associated to a stream, which serves as an abstraction for a queue of
operations awaiting execution. Streams allow finer control of some
mechanisms and higher parallelism among different operations
running on the same GPU. Additionally, CUDA operations can be
further improved by usingGraphs. This mechanism allows to record
a sequence of actions and replay them in the same order, achieving
greater efficiency than launching individual kernels.2

3 MOTIVATIONS
GPUs are widely used to accelerate AI workloads. The highly
parallel nature of most AI workloads calculations makes GPUs
an ideal execution target. GPUs, as well as other specific Deep

1More specifically, General Purpose Graphics Processing Units (GP-GPUs).
2Traditionally, functions running on a GPU are referred as kernels.
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Figure 1: Input and output bandwidth for some common ML
models, when running on a NVIDIA A100 with standard I/O
sizes. The bandwidth is estimated by multiplying the I/O
sizes by the measured inference rate.

Learning (DL) hardware, are often used as offload accelerators
in an asynchronous fashion, i.e., applications can continue
processing other data or tasks while computations are run on
the dedicated hardware. This allows scaling of accelerators and
CPUs independently for each application, according to the specific
requirements and the type of workload (e.g., more intensive pre-
processing, hybrid architectures, or memory-bounded models).
Most of these accelerators are specifically optimized for running
ML operations and have limited utility for general-purpose
programming [21, 37]. Consequently, this situation necessitates
the use of heterogeneous platforms, where certain operations are
carried out on general-purpose CPUs, highlighting the critical role
of the communication mechanisms in place for data exchange
between the different devices involved. GPUs are typically installed
in host machines (e.g., servers), where the CPU has the burden of
initializing, orchestrating, and issuing workloads to them. Most
of these systems operate on commodity x86 platforms and are
interconnected via a PCIe bus, the de facto industry standard
for servers, desktops, and edge devices. Current GPUs (e.g.,
NVIDIA H100 [28]) support PCIe 5.0, which provides a maximum
theoretical bidirectional bandwidth of 512Gbps. In addition to
the PCIe bus, most datacenter NVIDIA GPUs can leverage the
proprietary NVLink protocol [19]. The latest, fourth-generation
NVLink achieves up to 7 200Gbps of bandwidth between two GPUs,
either by direct connection or through an NVSwitch fabric [6].
Inference serving requires CPU intervention. The growing
interest in embedding AI functionalities into various products is
increasing the demand for inference-serving systems, where AI
models process data received from remote clients (e.g., through an
API). Although popular frameworks (e.g., TensorFlow and PyTorch)
provide mechanisms to integrate with other systems, almost all of
these approaches predominantly rely on CPU processing, involving
multiple data copies within the system. Typically, serving an
inference requires at least four memory transfers: (𝑖) NIC to RAM,
(𝑖𝑖) RAM to GPU, (𝑖𝑖𝑖) GPU to RAM, and (𝑖𝑣) RAM to NIC. In
applications where no additional CPU processing is required, these
transfers only represent an overhead for the system, increasing total
latency, power consumption, and limiting the throughput of the
entire processing chain. Clockwork [13] carefully controls low-level
mechanisms to meet consistent and reliable SLOs, while scaling
among a large number of clients. Similarly to many production
frameworks [8], Clockwork uses gRPC to move I/O across the
different parts of the system, using CPU cycles to copy data between
the protocol buffers and the GPU’s memory.
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Figure 2: Inference time distribution at various concurrency
levels for the squeezenet model. Lines are ordered left-to-
right according to the concurrency level.

Networking tasks in inference-serving systems demand
high CPU loads. The growing performance of GPU-accelerated
applications significantly influences the rate at which data is
processed by a GPU and, in turn, the volume of data exchanged over
the network in client-server setups. Fig. 1 shows the bandwidth
measured for a set of state-of-the-art AI models running on a
NVIDIA A100 GPU. The sub-millisecond inference times of some
models, combined with the high network bandwidth, results in
large CPU loads, which are further exacerbated in multi-GPU
chassis installations (e.g.,with a 4-to-1 or 8-to-1 GPU-to-CPU ratio).
References from the industry confirm our intuition, showing up to
50% of inference serving time spent in networking tasks [5].
Parallel execution leads to less predictable inference
performance. The deterministic sequence of GPU operations
in most AI systems enables applications to reduce inter-device
synchronization delays by carefully scheduling operations on CPU
and GPUs [13]. However, this assumption is effective only when
the GPU performs only one operation at a time. As shown in
Fig. 2, while the GPU throughput increases logarithmically with
higher levels of concurrency, the predictability of completion
times decreases. Having the ability to control networking
operations directly through the GPU could enable the execution
of GPU applications in a fully asynchronous manner, thereby
eliminating the unpredictability of inter-device synchronization
times. Unfortunately, this approach is largely impractical at present,
as almost all existing network transports are CPU-controlled.
Existing RDMA-from-GPU solutions still rely on the CPU
to post verbs. Previous works already tackled the problem of
offloading RDMA operations to the GPUs. GPUrdma [9] represents
one of the pioneering works addressing the interaction between
GPUs and NICs without CPU intervention. Nevertheless, this
approach requires host stackmodifications (i.e., a custom driver) and
the CPU is still involved in handling network transmissions. Most
NVIDIA GPUs implement PCIe peer-to-peer (P2P) transactions3
via the GPUDirect technology. More specifically, GPUDirect
RDMA [25] provides support for RDMA verbs targeting memory
areas in the GPU memory. However, the CPU remains responsible
for posting these transactions, retaining control over the network
stack. To mitigate this problem, NVIDIA recently introduced
GPUNetIO [2] into its DOCA framework, enabling direct posting

3PCIe P2P transactions allow system peripherals to directly access each other’s exposed
memory addresses.
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of RDMA operations from GPU kernels to the NIC. However, this
library depends on NVIDIA’s proprietary SmartNICs, limiting its
applicability to commodity, heterogeneous hardware in existing
deployments.

4 SYSTEM DESIGN
In this section, we illustrate our system’s design that enables direct
RDMA data transfers from GPUs without any CPU intervention.
The system implements three main components, leveraging
functionalities available in off-the-shelf NVIDIA GPUs (e.g., Unified
Memory, HostMemory Registration, CUDAGraphs, and GPUDirect
RDMA). These features are implemented as separate kernels, which
can be recorded in a CUDA Graph to be executed in an infinite loop.
The main logical loop running on the GPU is shown in Listing 1. We
package these routines as a shim library around rdma_core, using
the default library definitions for all unmodified code – maximizing
the re-usability and maintainability of our stack.
Network transmissions from the GPU. The action of posting
a verb, as described in § 2.1, can be abstracted as transferring
a sequence of data structures between the application and the
network stack. Yet, standard rdma_core APIs are not compiled
for CUDA devices and thus cannot be executed directly as device
code, requiring manual code porting. We take advantage of the
ability of modern GPUs to access memory addresses of other system
devices to implement equivalent GPU-side routines for posting
verbs. We exploit compiler conditional compilation (i.e., through
#ifdef __CUDA_ARCH__) to execute the same code on both the CPU
and GPU, with minimal device-specific routines for PCIe registry
manipulation and synchronization. The interface exposed to the
application is the same as the rdma_core posting routine, offering
a unified API function that can be invoked from both a GPU kernel
or from CPU-side programs.
Trigger RX/TX processing from the GPU. The vanilla RDMA
stack provides mechanisms that alert applications when a verb is
received at the NIC. In the context of GPU-accelerated programs,
this would result in costly synchronizations between the CPU
and the GPU, with CPU resources being inefficiently consumed in
waiting for these operations to complete. To circumvent this issue,
we devise a GPU-side busy-waiting routine, which polls through
the registered buffer memory of the RDMA stack, at fixed offsets,
to detect when new data is ready to be processed. This process is
executed as a separate kernel, pipelined before the main application
processing. As for the transmission side, the RDMA stack notifies
the application whenever an operation successfully completes. The
application must consume these notifications (called Completion
Queue Entries) to avoid triggering errors. In our approach, we devise
a mechanism to consume these events on the GPU side, without
the need to involve the CPU in this processing.
CPU-less continuous GPU operation. The ability of CUDA
GPUs to record sequences of kernels into graphs enhances
execution efficiency by minimizing CPU involvement in GPU-
related processes, provided these operations are accurately captured
within a graph. We employ self-launching device Graphs [27] to
create an infinite loop of GPU-side operations, thereby achieving
no load on the CPU. However, the design of CUDA APIs
necessitates that the CPU engage in a synchronization process (i.e.,
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Figure 3: Overview of the system functioning, showing the
main data paths.

cudaDeviceSynchronize), leading to a scenario where a single
CPU core is dedicated to monitoring the completion of GPU tasks,
consuming 100% of that core’s resources indefinitely until the
application is closed. In contrast, we design an interruptible sleep
feature, allowing the CPU to enter a sleep state while CUDAGraphs
are executed, thereby freeing up CPU resources for other processes.
We report the sample code for this mechanism in Listing 2. Note
that the stop variable value changes in response to external
interruptions or events on the GPU side.
Example of execution. Fig. 3 shows an overview of the system’s
functioning. First, data are transferred to the GPU memory via
NIC’s DMA engines 1○, then 2○ the CUDA kernel reads the data
directly, without intermediate copies, and 3○ write back the results
in another RDMA-enabled GPU buffer area. A verb is posted 4○ to
the NIC, which will 5○ read the new data from the buffer. Finally,
6○ the Graph will self-launch for the next execution.

5 EVALUATION
To demonstrate the benefit of our contribution and measure its
performance, we implemented a prototype and ran it on a physical
testbed. The server machine that runs our prototype is equipped
with two Intel Xeon 6336Y CPUs, 256GB of RAM, and a 200-Gbps
NVIDIAMellanox ConnectX-6 NIC. We run the GPU application on
a NVIDIAA100 and a NVIDIA L40, both connected to the same PCIe
4.0 switch as the NIC, allowing direct P2P PCIe transactions. We
use a separate server machine, equipped with a 100-Gbps NVIDIA
Mellanox ConnectX-5 NIC, to act as a remote endpoint for RDMA
connections. We interconnect the machines with an OpenFlow 100-
Gbps switch, from which we collect network throughput metrics.
Both systems run upstream software packages (e.g., Ubuntu 20.04
LTS, NVIDIA CUDA 12.3, andMellanox OFED). All MLmodels have
been compiled with Apache TVM [11]. We fix the clock frequencies
to their nominal values and disable energy saving mechanisms to

Listing 1: Pseudo-code for our GPU-side processing, to be
recorded as a CUDA Graph.
__host__ void execute (){

wait_inputs <<<1,1>>>();
process <<<1,1>>>();
send_outputs <<<1,1>>>();
tail_launch <<<1,1>>>();

}

Listing 2: Pseudo-code for our CPU-side interruptible sleep
approach. cudaDeviceSynchronize is called only when the
program needs to terminate.
cudaGraphLaunch(i,stream );
while (!stop){sleep (1);};
cudaDeviceSyncrhonize ();
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Figure 4: Throughput when generating packets from two
different GPUs and CPU.

reduce the dynamic variables in the system and ensure predictable
results, which are collected across multiple runs.

5.1 Microbenchmarks
GPU-controlled RDMA can saturate a 100-Gbps link.
Considering GPUs’ limited efficiency in handling sequential, single-
threaded tasks, such as verb posting, it is important to evaluate
whether a modern GPU could initiate RDMA verbs efficiently. Fig. 4
shows the throughput (in Gbps) of a single-thread packet generator
running on the CPU and on two GPUs models while generating
payloads of varying size. To demonstrate that our system performs
on par with vanilla RDMA verbs, we performed the experiment on
the CPU side using two approaches: (𝑖) using vanilla ibv_verbs
from the rdma_core upstream library (red line) and (𝑖𝑖) utilizing our
custom functions (blue line), which are identical to those compiled
as CUDA kernels (orange and green lines). We note that (𝑖) all four
implementations can saturate a 100-Gbps link when packet sizes
are large enough and (𝑖𝑖) GPU throughput scales similarly to CPU,
but with different slopes. These different slopes are related to the
different clock speeds of the devices, where the CPU operates at a
higher frequency, and with the L40 running faster than the A100
(i.e., 2.49GHz vs. 1.41GHz).
Posting verbs from theGPU requires constant time.We further
investigated if our system could introduce additional overheads in
verbs posting with respect to the vanilla, CPU-based ibv_verbs
implementation. Fig. 5 shows the latency (measured from the
application) to post a RDMAoperation in the NIC. As it is possible to
notice, the posting time is constant across all implementations and
packet sizes, though GPUs exhibit longer times due to their slower
clock rate. Notice that the latency for CPU postings decreases as
the payload size increases. We hypothesize that this trend is due to

0.90

1.40

1.90

2.40

2.90

Ti
m

e 
(m

s)

CPU mediated GPU driven0

Pure inference time
Send output time
Wait input time
Copy Output time
Copy Input time
CPU->GPU Input copy time
GPU->CPU Output copy time

Figure 6: Total inference time contribution when controlling
network on the CPU vs. on the GPU running superresolu-
tion [34] on a NVIDIA A100.

10 20 30 40 50 60 70 80
Payload Size (kB)

1.0 ns

10 ns

100 ns

1 µs

Ap
pl

ica
tio

n 
tim

e 
to

po
st

 a
 v

er
b Standard ibv_verbs (CPU)

Crafted verbs (CPU)
GPU driven - A100
GPU driven - L40

Figure 5: Average time to post a RDMA verb from CPU and
GPUs.

PCIe dynamics and limits in our CPU-side prototype. We leave the
analysis of these dynamics as future work.

5.2 GPU-controlled RDMA for inference serving
To examine how our system affects performance of a realistic
application, we built an inference-serving system prototype that
runs some state-of-the-art ML models compiled with Apache
TVM [11]. On modern GPUs, such ML models are capable of
performing inferences within milliseconds, as demonstrated by
MLPerf results [22]. We believe that deploying similar inference-
serving systems at the edge could enhance response times to user
requests with respect to centralized approaches.
Posting verbs from the GPU has negligible impact on the
overall inference time. Fig. 6 shows the break-down of a CPU-
mediated (i.e., where data is transported through RDMA but the
networking is CPU controlled) and a GPU-driven (i.e., running
entirely on the GPU) version of our serving prototypewhile running
the superresolution model. The posting and busy-waiting times
become negligible while serving common ML models. Using our
mechanism leads to a 50% reduction of total inference time, despite
the longer verb posting times.
Eliminating CPU utilization during inference serving. Fig. 7
shows the CPU usage when using our interruptible sleep approach
introduced in § 4 (green and dark-green lines) compared to standard
CUDA synchronization APIs (red and orange lines). The application
runs for 60 seconds before a termination signal is sent. For standard
API calls, the CPU usage quickly ramps up to 100% on one core
due to the polling nature of the API (i.e., the immediate invocation
of cudaDeviceSynchronize). In contrast, our approach results in
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minimal CPU usage, using it only during the final stage when the
synchronization is effectively invoked, and maintaining 0% CPU
usage during inference serving. The throughput and processing
times of the application are unaffected by these mechanisms.

6 RELATEDWORKS
A number of industrial efforts have already addressed the problem
of providing interconnection to GPUs. NVIDIA NCCL [26] allows
GPUs to collaborate in large HPC clusters, while UCX [29] and
MSCCL [7] provide mechanisms to integrate these routines in
bigger MPI-style computations. Although our approach is powered
by the same underlying technology, we address the problem of
direct connectivity with other heterogeneous nodes in a network,
without any CPU intervention, focusing to a client-server scenario
instead of collective operations.

Aside from the works already discussed in § 3, GPUnet [36], GPU-
ether [17] and Lynx [37] have proposed approaches to move more
networking processing to GPUs. However, these solutions require
custom drivers or dedicated SmartNICs. Our approach is orthogonal
to these works, providing general data-transfer mechanisms with
minimal costs on the GPU and minimal modifications to the
networking stack of the host systems.

Some works explore the inference-serving domain, proposing
efficient methods for serving large volumes of traffic [8, 13, 32,
40] without specifically focusing on optimizing the underlying
network transport mechanism, but rather relying on CPU-mediated
networking. SplitRPC [18] presents an approach to deliver inference
data directly on GPUs, characterizing the networking time required
in common inference serving scenarios.

Many works address the concerns of low-latency video
manipulation and network transport for real-time applications [10,
14, 20, 31, 33]. Our contribution helps these efforts by optimizing
the underlying network architecture, fostering the adoption of these
applications with minimal infrastructure adaptations.

7 CONCLUSIONS
We have proposed a novel RDMA stack running on the GPU
side, showing how performing RDMA operations from a GPU is
beneficial for both throughput and latency, reducing the need to
deploy powerful CPUs at the edge. Our solution could be easily
integratedwith existing systems and leverages standard protocols to
maximize the compatibility with other applications. Our work helps
towards improving the availability of GPU-accelerated applications
on edge computing platforms, minimizing the required resources
around GPU devices.
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