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Abstract. ECG Imaging (ECGI) is a technique for cardiac electrophysiology
that allows reconstructing the electrical propagation through different parts of the
heart using electrodes on the body surface. Although ECGI is non-invasive, it
has not become clinically routine due to the large number of leads required to
produce a fine-grained estimate of the cardiac activation map. Using fewer leads
could make ECGI practical for clinical patient care. We propose to tackle the lead
reduction problem by enhancing Neural Network (NN) models with Graph Neu-
ral Network (GNN)-enhanced gating. Our approach encodes the leads into a
meaningful representation and then gates the latent space with a GNN. In our
evaluation with a state-of-the-art dataset, we show that keeping only the most
important leads does not increase the cardiac reconstruction and onset detection
error. Despite dropping almost 140 leads out of 260, our model achieves the same
performance as another NN baseline while reducing the number of leads. Our
code is available at github.com/giacomoverardo/ecg-imaging.
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1 Introduction

ECG Imaging (ECGI) is based on solving the inverse problem of cardiac electro-
physiology to reconstruct the electrical propagation through different parts of the heart
by using electrodes on the body surface together with cardiac and torso geometry. It
offers a non-invasive method to map and analyze cardiac electrical activity with high
precision, aiding in the diagnosis and treatment of arrhythmias such as atrial fibrillation
and ventricular tachycardia. ECGI has typically required hundreds of leads. This paper
presents an approach to reduce the number of leads needed to reconstruct the cardiac
activation map from the Body Surface Potential Mapping (BSPM) measurements.

https://github.com/giacomoverardo/ecg-imaging
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Our main contributions are:

1. We present a novel approach for redundant lead removal in ECGI, which relies
on a Graph Neural Network (GNN)-gating mechanism in the Frequency Modu-
lated Möbius (FMM) latent space. To the best of our knowledge, we are the first to
propose using this combination when solving the inverse problem of ECGI.

2. We evaluate our model on a state-of-the-art dataset5 and show that we can
reduce the number of leads required for ECGI by up to a hundred out of 260, thus
potentially making ECGI feasible for clinical use. Moreover, we show that our
model outperforms a state-of-the-art model in terms of cardiac reconstruction loss
and onset detection even when a large number of leads are removed.

2 Background

This section provides information about Artificial Intelligence (AI) and non-AI-based
ECGI (Section 2.1), and the sub-networks composing our model: convolutional layers
(Section 2.2), FMM encoding (Section 2.3), and the GNN architecture (Section 2.4).

2.1 ECG Imaging

ECGI is a non-invasive cardiophysiology technique that combines information from
BSPM and geometry information (usually obtained with a CT scan) to reconstruct the
electrical propagation inside the heart. ECGI is a broad field and includes different
tasks, such as reconstruction of the cardiac activation map [2,3], detection of the earliest
activation sites [13] during a heartbeat, and estimation of the cardiac Transmembrane
Potential (TMP) [5]. The forward problem of ECGI refers to the computation of the
BSPM (i.e., the potentials measured with electrodes) from a known electrical cardiac
source. This relationship can be expressed with a linear model:

xbspm(t) = Hxacti(t) + n(t) (1)

where the matrix H can be estimated from geometric information (e.g., torso and
heart meshes) and the electrical conductivity of tissues within the torso, xacti(t) is the
source cardiac electrical activity, xbspm(t) is the signal measured from the electrodes,
and n(t) represents random additive noise.

Although the linearity of the equation may suggest that reconstructing the cardiac
source is a straightforward task, the ECGI inverse problem is ill-posed [14]: even though
the relation between the cardiac electrical source and the corresponding BSPM mea-
surement is linear, a negligible error in the measurements may lead to considerable
errors in the estimated cardiac source:

x̂acti(t) = H−1xbspm(t) (2)

Tikhonov regularization has been used to include a priori knowledge of xacti and re-
duce the impact of the ill-posed problem. AI has also been proposed to learn the relation
between xacti and xbspm or a suitable regularization [1,12].

5 The number of employed leads in the evaluated dataset is N = 260. The cardiac and torso
geometry is provided by Computed Tomography (CT) scans.
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ECGI with Tikhonov regularization Solving the inverse problem for ECGI requires
two steps: (i) defining the forward H matrix in Equation (1) from geometrical and
conductivity properties of the torso (for instance, by means of the Boundary Element
Method (BEM)) and (ii) estimating the cardiac electrical source while stabilizing the
solution. Tikhonov regularization is a standard technique to penalize predicted x̂acti

with high norms. The general formulation is:

J(x) = ∥Hxacti − xbspm∥2 + λ2∥Rxacti∥2 (3)

where λ is the regularization parameter and R the regularization matrix, which is the
identity matrix for zero-order Tikhonov regularization. Tikhonov regularization thus
involves solving an optimization problem that balances the fit of the forward model to
the measured data with a regularization term to stabilize the solution, minimizing J(x).

ECGI via AI-based models Neural Network (NN)-based solutions have been
applied to ECGI. They employ Long-Short Term Memory (LSTM) layers, fully
connected models, convolutional networks [4,2,5], or GNNs [8] to include the geometry
input (e.g.,obtained from the CT scan or Magnetic Resonance Imaging (MRI) [21]) and
the BSPM measurements to estimate the cardiac electrical source. This allows learning
from available data instead of solving an optimization problem for each heartbeat. Once
the NN is trained, inference can be performed to retrieve an estimate in much less time
than the optimization time of standard solvers for inverse problems.

Although ECGI is a viable alternative to invasive approaches, it is clinically
impractical since it requires hundreds of electrodes to be placed on the patient’s body
by means of either single electrodes or vests [11]. Multiple non-AI-based methods
have been proposed to detect the earliest activation site from a reduced number of
electrodes [13] or even from standard 12-lead Electrocardiograms (ECGs) [11] with
increasing error as the number of leads is reduced. Instead, we argue that AI-based
techniques can be beneficial for ECGI when a limited set of leads is available.

2.2 Convolutional neural networks

Convolutional Neural Networks (CNNs) [10] are state-of-the art NNs that detect
increasingly complex patterns in the input as their depth increases. Each layer in a CNN
performs a convolution operation between the inputs and a set of trainable
parameters (i.e., the kernel), thus producing an output which is higher where the input is
closer to the kernel’s representation. CNNs have been extensively used for 1D signals,
such as ECGs [7,2], since they can recognize specific patterns in the ECG input, such
as the shapes of the PQRST waves, and thus CNNs are employed to solve numerous
tasks. However, CNNs have seldom been employed to encode ECGs into explainable,
lead-specific latent space [20].

2.3 FMM Formulation

The FMM model [15] is a time-series oriented mathematical formulation that can
encode simple waves as a set of interpretable parameters. In particular, they can be
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used to model the depolarization and repolarization waves in each ECG lead [16],
thus compressing them into a lower-dimensional representation that retains the original
information. These parameters can be extracted with the following formulas:

W (ti) = µ(ti) + e(ti) = M +A cos(φ(ti)) + e(ti) (4)
φ(t) = β + 2arctan(ω tan(t− α)) (5)

e = (e(t1), . . . , e(tn))
T ∼ N (0, σ2I) (6)

where each parameter in the tuple θ = (A,α, β, ω,M) can be either shared or not
between leads and the parameters are: A ∈ R+ is the amplitude of the wave; α ∈ [0, 2π)
is the angular position of the peak (lead-shared); β ∈ [0, 2π) is the peak direction;
ω ∈ [0, 1] indicates the width of the lobe of the peak (lead-shared); M ∈ R is the
constant offset of the lead; and e ∈ R is the error between the real heartbeat and one
reconstructed from FMM parameters.

Different NN-based models have been proposed to automatically extract the FMM
parameters from ECG data [20,23]. Using a model trained with these FMM parameters
results in an inference time that is three orders of magnitude less than the time to solve
the optimization problem [16]. However, these studies are limited to 12-leads ECG and
have never been applied for ECGI.

2.4 Graph Neural networks

GNNs have become a versatile tool for addressing various inference tasks on
graph-structured data [17,22]. Conceptually, a GNN is composed of message-passing
layers that recursively update each node’s feature vector by considering information
from its neighboring nodes [6]. Stacking K GNN layers involves creating node embed-
ding vectors that consider their K-hop neighborhood by utilizing the graph’s structure
and the relationships between nodes [6,9]. Mathematically, for a graph G = ⟨V,E⟩
with nodes v ∈ V and edges (v, u) ∈ E, at GNN layer i, the hidden feature vector hv

for node v is updated as:

hi
v = g1

(
AGGu∈N (v)

[
g2

(
hi−1
u

)]
, hi−1

v

)
, (7)

where g1 and g2 are non-linear transformations, AGG is an order-invariant aggrega-
tion function, and N (v) represents the set of neighboring node feature vectors of node
v [6,9,18]. These embedding vectors are generally processed further with linear layers
to produce the final output based on the specific task. For instance, node regression can
be achieved by feeding each hv ∀v ∈ V , through a final regression layer. Although
GNNs have already been employed for ECGI to map torso to heart geometries [8], we
claim that they are also beneficial to detect the most crucial leads to reconstruct the
cardiac activation map.

3 Methodology

Our aim is to reconstruct the cardiac activation map from the BSPM measurements
and the CT scans. We do so by integrating two novel components: (i) an FMM-based
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encoded latent space that supports hundreds of leads and (ii) a gating Graph Attention
(GAT)-based GNN that selects and weights the latent space, as depicted in
Figure 1. We argue that such a solution can determine the importance of the differ-
ent leads in the latent space, while still allowing the retrieval of information from all
the leads into the latent space (e.g., to compute shared FMM parameters). Section 3.1
describes our pipeline, including inputs, 1D-convolutional encoder, FMM latent space,
3D-convolutional decoder, and employed loss functions. We describe our GNN gating
mechanism in Section 3.2.

θ1

X

Encoder

F
M
M

Decoder

GNN

W1

WN

θN

θShared

Electrodes 
Positions

Fig. 1. Model architecture, which includes a 1D convolutional encoder, an FMM latent space for
hundreds of leads, a model gating GNN and a 3D convolutional decoder. The FMM latent space
includes lead-exclusive and lead-shared θ parameters.

3.1 Encoder-Decoder pipeline

Our input consists of 3D tensors (the cardiac activation map and conduction velocity
map obtained from the CT scan) and the measured BSPM data. Our encoder extracts the
estimated FMM parameters from the BSPM sensors by means of stacked convolutional
blocks with different kernel sizes and number of kernels per layer, in a similar fashion
as [7]. The extracted parameters are θ = fϕenc

(xbspm), which includes both lead-shared
and not shared parameters:

αj , ωj ∈ θshared,

Aij , βij ∈ θi, i ∈ {1, . . . , N}, j ∈ {1, . . . ,M},
(8)

where N is the number of leads, M is the number of ECG waves in the BSPM in-
puts, θshared represents the parameters shared across all leads, and θi represents the
parameters specific to the i-th lead. Inspired by [20], we designed our FMM layer to
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handle parameters for hundreds of leads. The layer has two outputs: the θ parameters
and the reconstructed BSPM signal x̂bspm from θ. We can hence define a loss function
in the latent space to constrain θ to be close to the real FMM parameters by minimizing
the mean squared error between original and reconstructed BSPM signals of length L:

Lossbspm =
1

NL

N∑
i=1

L∑
j=1

(xbspm,ij − x̂bspm,ij)
2 (9)

Additionally, we constrain the FMM latent space to a meaningful representation by
encouraging through a loss term Lossα the α parameters to be close to the detected
peaks in the BSPM leads. By doing so, we avoid running a warm-up regression phase
as in [20], which is expensive and requires the ground-truth FMM parameters which
are usually not available.

After weighting the extracted parameters with the GNN (Section 3.2), θ is given
as input to the decoder which produces an estimation of the cardiac activation map.
The decoder is a 3D CNN that is conditioned to the BSPM signals and the conduction
system velocity (obtained by processing the CT scan). The decoder is taken from [2],
with the notable exception of having L1-L2 regularizers for the decoder layers. These
regularizers are crucial to avoid θ parameters with low values (i.e., those dropped by
the GNN) affecting the activation map reconstruction. Hence, the decoder applies the
function: x̂acti = hϕdec

(θ, xbspm, xconduct) to predict the activation map xacti. The
loss value for the cardiac activation map reconstruction is computed similarly to [2] by
averaging the squared error on the relevant voxels (i.e., on a specific mask) between the
reconstruction and the inverted original signal, so that the earliest activation points are
better identified:

Lossacti =
1

|M|
∑

(i,j,k)∈M

((1− xacti,ijk)− x̂acti,ijk)
2 (10)

where M is the set of indices defined by the 3D mask xmask. We refer the reader to [2]
for further implementation details. The full loss function is therefore:

Loss = γbspm · Lossbspm + γα · Lossα + Lossacti (11)

where γbspm and γα are loss weight ratios that determine the relative importance of the
BSPM loss and α loss compared to the activation loss.

3.2 Graph Neural Network-Gating

We use a GNN to gate the θi FMM parameters from the latent space. The GNN includes
multiple blocks of GAT attention layers with skip connections and layer normalization.

Our GNN produces as output a set of N wi scalar weighs, one for each lead. The θ
parameters can then be weighted as:

θ′ij =

{
θij , if θij ∈ θshared

wi · θij , otherwise
(12)



Reducing leads for ECGI via GNN and FMM latent space 7

where w = gϕgnn
(Adj, xbspm) and Adj is the adjacency matrix for the electrodes,

computed as radial basis function of their positions: k(x, y) = exp
(
−∥x−y∥2

2ℓ2

)
, ℓ being

the length scale parameter. The choice of a suitable ℓ allows a sufficient number of
neighboring electrodes to attend to the signals of each electrode. Hence, a node with
high importance can reduce the weight of its neighboring nodes, thus removing the
redundancy of the available leads and therefore reducing the number of necessary leads.

During testing, the number of leads needed can be reduced by dropping those
corresponding to the lowest wi. The corresponding θi parameters are therefore ze-
roed out, as well as excluding the input leads xbspm from the input to the encoder and
the decoder. This approach enables training using all the leads, thereby enhancing the
robustness of learning to reconstruct the FMM parameters since they are encoded from
every lead. Moreover, our model can be dynamically evaluated on any number of leads,
thus providing a more complete and compact analysis of the impact of lead removal
for ECGI compared to full training sessions with a reduced set of leads (which would
require

∑N
k=0

(
N
k

)
= 2N different models, one for each possible set of leads).

3.3 Metrics

We evaluate the performance of our method based on two metrics: reconstruction
error on the activation map (Mean Absolute Error (MAE)) and onset prediction error.
The computation of the MAE follows the same formula of Equation (10), where the
absolute value is employed instead of the square function. Hence, the MAE provides
a measure of the normalized average temporal distance between ground-truth and pre-
dicted cardiac activation map. The onset prediction error is instead trickier to compute,
since the identification of an onset depends on the employed policy. One simple policy
is the selection of the earliest activation point whose neighbours are activated within a
specific time interval. Although such solution is straightforward to implement, it lacks
generalizability on multiple onsets (as in the dataset employed in Section 4) and robust-
ness with respect to sparsity of the predicted activation map, which is AI-generated.

For these reasons, we propose to employ clustering algorithms to estimate the onsets
on both predicted and ground-truth activation maps. We perform such computation in
three steps: (i) we extract the 10% percentile of the activation map, which represents
the neighborhood of the activated points at the beginning of the onset, (ii) we weight
the extracted points according to their activation time and (iii) we perform K-Means
clustering, where K is the number of onsets, which is available during testing. In order
to assign the predicted onset to the best estimated onset from the initial points of the
ground-truth activation map, we solve a Linear assignment problem (LAP) where the
cost matrix is the euclidean distance. The impact of few activated outlier points is thus
attenuated by the large number of points used as input to the clustering model.

4 Experimental Results

We evaluate our model on the available-on-request dataset from [2,3], which consists
of simulated data of source cardiac activation map (generated with the Eikonal model),
correspondent measurement on the torso and conduction map for 7 patients (5 for
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training and 2 for testing). We train our model with multiple learning rates, early
stopping, and learning rate decay for a maximum number of 240 epochs. We then
compute the average and standard deviation of the test loss for the activation map
reconstruction across the test samples. We evaluate the impact of dropping leads by
zeroing out the input leads and the extracted non-shared parameters θi in a range
between 0 and N = 260 with a step size of 20, as explained in Section 3.2. We compare
our model performance with the Variational Autoencoders (VAE) from [2]. Details of
the training procedure are available in the code repository [19].
Compared to the VAE baseline, our approach achieves lower training, validation,
and test loss, thus achieving a more reliable reconstruction of the activation map.
Table 1 shows the test and validation loss for different learning rates: (i) for our model
with multiple ratios between cardiac activation loss and signal loss and (ii) for our
baseline. The results show that the test loss is reduced by up to 6.9% in terms of mean
squared error on the prediction of the cardiac activation map. The accuracy of our ap-
proach can be visually estimated by considering one example of cardiac activation map
ground-truth Figure 5a, prediction Figure 5b, and the absolute difference between them.

Table 1. Comparison of our model with the VAE baseline for multiple hyper-parameters: learning
rate, γbspm and γα. The last two are not applicable for the VAE baseline.

Model LR γbspm γα MAE [ms] MSE [×10−3] Onset Error [mm]

Ours

1e-5 0.1 1.0 131.7 ± 14.7 27.8 ± 5.6 29.99 ± 11.17
1e-5 1.0 1.0 128.8 ± 16.3 26.9 ± 6.3 29.76 ± 11.63
1e-5 1.0 10.0 131.8 ± 14.7 27.8 ± 5.6 29.81 ± 11.11
1e-4 0.1 1.0 130.2 ± 19.1 27.5 ± 7.4 30.19 ± 12.74
1e-4 1.0 1.0 127.1 ± 16.1 26.1 ± 6.3 27.47 ± 10.66
1e-4 1.0 10.0 128.9 ± 15.9 26.9 ± 6.2 28.96 ± 11.94

VAE
1e-4 n/a n/a 133.4 ± 16.3 28.0 ± 6.7 30.36 ± 9.14
1e-5 n/a n/a 145.0 ± 9.7 32.2 ± 4.1 43.88 ± 10.35

Our model achieves the same test reconstruction loss for the cardiac activation
map as our baseline when almost 140 leads are dropped. Figure 2b shows the test
activation loss of our model as we progressively remove the leads with the lowest weight
wi from the inputs. Although the impact on the loss is dramatic when a large number
of leads are ignored, our model remains robust to lead removal up to almost 50 leads.
Moreover, our model achieves a lower test loss than the baseline, even when 134 leads
are removed. Hence, we argue that NN-based learning of important leads is a feasible
technique to reduce the burden of placing hundreds of electrodes for ECGI.
Our model achieves lower prediction error on the estimated onsets compared to
the baseline. Table 1 provides the average and standard deviation on the error on the
position of the onsets estimated by clustering on the firstly activated points, as defined
in Section 3.3. Our results prove that our model is able to better detect the predicted
position of 9.5% compared to our baseline. However, the high standard deviation in-
dicates high variability between different test samples. Indeed, as shown in Figure 3,
test samples with a single onset demonstrate much lower prediction error (17.9mm)
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Fig. 2. Results for our model with learning rate 1e−4 and loss weight ratio 1.0: (a) shows the
FMM reconstruction in the latent space for lead 100, proving that our training procedure can
extract meaningful FMM parameters (b) shows the increase in test activation loss when leads
are removed, demonstrating that (i) up to 50 leads can be removed with negligible performance
degradation (ii) up to 134 leads can be removed while having lower loss than the baseline.

compared to two (30.9mm) and three onsets (29.9mm). Hence, finding multiple on-
sets is the most challenging task. Figure 3a shows that we can remove up to 150 leads
without affecting the estimated onset prediction error for the one onset case. Interest-
ingly, the performance of the model increases when few leads are removed. Such leads
have almost zero weight and do not contribute to the activation map reconstruction. The
specific sample depicted in Figure 4 graphically shows that removing 150 leads reduces
the onset prediction by only 7.5mm. Instead, spatial resolution is significantly affected
by lead removal in the two- and three-onset cases, which are more challenging due to
the superimposition of propagation from multiple pacing sites.
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Fig. 3. Prediction error for the pacing site when varying the number of removed leads for our
model with learning rate 1e−4, γbspm = γα = 1.0. Figures (a), (b), (c) depicts the average error
for test samples with one, two and three onsets respectively.

Our model achieves a meaningful, explainable latent space by means of FMM
coefficients estimation. Figure 2a shows the reconstruction obtained from the esti-
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Fig. 4. Results for our model with learning rate 1e−4 and γbspm = γα = 1.0: (a) shows the full
heart with the predicted onsets when multiple leads are removed by means of our GNN-gating
mechanism while (b) zooms-in on the predicted onsets. The black numbers above the points
indicate the number of zeroed-out leads. For the sample shown, if up to 150 leads are removed,
the distance to the predicted pacing site with all the leads is within 7.5mm (green sphere)

mated FMM parameters in the latent space, which closely resembles the real BSPM
signals. Hence, we argue that our latent space can indeed be used as a compressed ver-
sion of the inputs, thus allowing θi to be correctly gated. Compared to [20], our model
does not need expensive warm-up regression to achieve a meaningful latent space. That
is due to the fact that: (i) our dataset only includes the QRS complex and T wave, which
can be both represented with a single FMM wave from 8 and (ii) having more leads as
input is beneficial to the accuracy of the estimation, as pointed out by [16].

0.00  37.7  75.5  113.  151.  
Activation [ms]

(a) Ground-truth

0.00  37.7  75.5  113.  151.  
Activation [ms]

(b) Predicted (Ours)

0.00  37.7  75.5  113.  151.  
Activation [ms]

(c) Predicted (VAE)

Fig. 5. Example cardiac activation map: (a) ground-truth, (b) prediction with our approach, (c)
prediction with VAE baseline. The reconstruction capability depends on the sample, patient, and
training hyper-parameters. Table 1 provides a quantitative analysis.
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5 Conclusions

In conclusion, this study has investigated the possible reduction of the number required
leads when performing ECGI tasks. Our GNN-based approach to lead-gating on FMM-
enabled latent space allows reducing the number of employed leads by 50 with only a
slight increase in the error for cardiac activation map reconstruction. Our findings also
indicate that it is possible to encode ECG data from BSPM to a FMM representation
with a convolutional model without requiring computing the ground-truth FMM coef-
ficients. As future work we will investigate how the different components of our model
affect the reconstruction capabilities. Moreover, we will train our models for a finer grid
of hyper-parameters to show the robustness of our approach.
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