
DeepGANTT: A Scalable Deep Learning Scheduler for Backscatter
Networks

Daniel F. Perez-Ramirez
RISE Computer Science
Stockholm, Sweden

KTH Royal Institute of Technology
Stockholm, Sweden
daniel.perez@ri.se

Carlos Pérez-Penichet
RISE Computer Science
Stockholm, Sweden
carlos.penichet@ri.se

Nicolas Tsiftes
RISE Computer Science
Stockholm, Sweden
nicolas.tsiftes@ri.se

Thiemo Voigt
Uppsala University
Uppsala, Sweden

RISE Computer Science
Stockholm, Sweden

thiemo.voigt@angstrom.uu.se

Dejan Kostić
KTH Royal Institute of Technology

Stockholm, Sweden
RISE Computer Science
Stockholm, Sweden

dmk@kth.se

Magnus Boman
KTH Royal Institute of Technology

Stockholm, Sweden
mab@kth.se

ABSTRACT
Novel backscatter communication techniques enable battery-free
sensor tags to interoperate with unmodified standard IoT devices,
extending a sensor network’s capabilities in a scalable manner.
Without requiring additional dedicated infrastructure, the battery-
free tags harvest energy from the environment, while the IoT de-
vices provide them with the unmodulated carrier they need to
communicate. A schedule coordinates the provision of carriers for
the communications of battery-free devices with IoT nodes. Optimal
carrier scheduling is an NP-hard problem that limits the scalability
of network deployments. Thus, existing solutions waste energy and
other valuable resources by scheduling the carriers suboptimally.
We present DeepGANTT, a deep learning scheduler that leverages
graph neural networks to efficiently provide near-optimal carrier
scheduling. We train our scheduler with optimal schedules of rel-
atively small networks obtained from a constraint optimization
solver, achieving a performance within 3% of the optimum. With-
out the need to retrain, our scheduler generalizes to networks 6×
larger in the number of nodes and 10× larger in the number of tags
than those used for training. DeepGANTT breaks the scalability
limitations of the optimal scheduler and reduces carrier utilization
by up to 50% compared to the state-of-the-art heuristic. As a con-
sequence, our scheduler efficiently reduces energy and spectrum
utilization in backscatter networks.

CCS CONCEPTS
• Networks → Sensor networks; • Computing methodologies
→Machine learning; Planning and scheduling.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IPSN ’23, May 9–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0118-4/23/05.
https://doi.org/10.1145/3583120.3586957

KEYWORDS
scheduling, machine learning, wireless backscatter communica-
tions, combinatorial optimization
ACM Reference Format:
Daniel F. Perez-Ramirez, Carlos Pérez-Penichet, Nicolas Tsiftes, Thiemo
Voigt, Dejan Kostić, and Magnus Boman. 2023. DeepGANTT: A Scalable
Deep Learning Scheduler for Backscatter Networks. In The 22nd Interna-
tional Conference on Information Processing in Sensor Networks (IPSN ’23),
May 9–12, 2023, San Antonio, TX, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3583120.3586957

1 INTRODUCTION
Backscatter communications enable a new class of wireless devices
that harvest energy from their environment to operate without bat-
teries [18, 31, 53]. Recent advances have demonstrated how these
battery-free backscatter devices—tags for short— can seamlessly
perform bidirectional communicationswith unmodified Commercial
Off-The-Shelf (COTS) wireless devices over standard physical layer
protocols when assisted by an external unmodulated carrier [9, 22,
25, 26, 40, 43, 46]. This synergy facilitates new applications where
tags are placed in hard-to-reach locations to perform sensing with-
out the encumbrance of bulky batteries and the maintenance cost
of frequent battery replacements [40, 43]. However, for backscat-
ter tags to communicate, the Internet of Things (IoT) devices in
the network must cooperate to provide an unmodulated Radio Fre-
quency (RF) carrier. Unfortunately, providing carrier support means
a significant resource investment for the IoT devices, which may
be battery-powered. As a consequence, the efficient provision of
unmodulated carriers is crucial for system-level performance and
network lifetime.

Scenario. We consider a network of unmodified COTS wireless
IoT nodes augmented with battery-free tags that do sensing on
their behalf [40]. In this context, one can see the tags as devices
that wirelessly provide additional functionality to the IoT nodes
with simplicity akin to adding Bluetooth peripherals to our comput-
ers, but without incurring extensive maintenance and deployment
costs associated with battery-powered devices [40, 43]. Since we
aim at augmenting the sensing capabilities of unmodified standard

https://orcid.org/0000-0002-1322-4367
https://orcid.org/0000-0002-1903-4679
https://orcid.org/0000-0003-3139-2564
https://orcid.org/0000-0002-2586-8573
https://orcid.org/0000-0002-1256-1070
https://orcid.org/0000-0001-7949-1815
https://doi.org/10.1145/3583120.3586957
https://doi.org/10.1145/3583120.3586957


IPSN ’23, May 9–12, 2023, San Antonio, TX, USA Perez-Ramirez, et al.

Cloud/Edge Server

IoT Network augmented with
Backscatter Tags

normal
schedule

normal
schedule

Tag Interrogation
Schedule

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
DeepGANTT

Self-Attention GNN

...

GNN-1 ...
...

GNN-K

IoT Device Battery-free tag

N
et

w
or

k 
To

po
lo

gy

Schedule for the tags

Disseminate to network

Figure 1: DeepGANTT uses GNNs to schedule wireless communications in a backscatter
network. It takes a graph representing the wireless network as input and produces a
schedule, which directs IoT nodes (𝑣) to interrogate every battery-free tag (𝑇 ) with
minimal resources by reducing the number of carriers (C) and timeslots (𝑠) needed.

5 Nodes & 7 tags 
 (training network size)

10 Nodes & 14 tags 
 (maximum training 

 network size)

40 Nodes & 60 tags 
 (4x max. size of 

 training networks)

0

10

Av
g.

 c
ar

rie
rs

 
sa

ve
d 

co
m

pa
re

d 
to

 h
eu

ris
tic

 [%
]

DeepGANTT Optimal Scheduler

Figure 2: DeepGANTT provides near-optimal schedules and generalizes well beyond the
scalability limitation of the optimal scheduler. DeepGANTT’s performance is within 3%
of the optimum on trained problem sizes, but can be applied to much larger networks.

wireless networks, we focus on scenarios where the IoT nodes
employ a time-slotted MAC protocol. Such is the case of both Blue-
tooth Low Energy (BLE) and IEEE 802.15.4/ZigBee. The IoT nodes
perform their own communication and computation according to
their normal schedule. Additionally, a tag interrogation schedule
is required for the commodity devices to collect sensor readings
from the tags by coordinating among themselves to provide the
unmodulated carrier that tags need to both receive and transmit
data (see Fig. 1). An advantage of this tag-augmented scenario is
that the battery-free tags can be located in hard-to-reach locations
such as moving machinery, medical implants, or embedded in walls
and floors. Meanwhile, the more capable IoT nodes are placed in
accessible locations nearby, where either battery replacement or
mains power is available [40, 43]. Consider, for instance, a health-
care monitoring application that includes implanted and wearable
sensors [23]. If the battery-powered wearables cooperate to collect
measurements from the implants, they could spare the patients from
undergoing surgery just to replace the implants’ batteries because
they can now be battery-free. Making these devices battery-free
is also important for sustainability reasons. Similar examples can
be envisioned for applications such as industrial machinery, smart
agriculture, and infrastructure monitoring [19, 47].

Challenges. In tag-augmented scenarios, IoT nodes invest con-
siderable resources to enable the tags’ communication, despite
the fact that they may be battery-powered or otherwise resource-
constrained. To minimize the resources allocated to supporting

Optimal scheduleTag-augmented IoT
Network

Sub-optimal schedule 

Interference

Sub-optimal carrier provisioning Efficient carrier re-use

IoT Device Backscatter tag

Backscatter tag communication rangeCarrier provisioning

Figure 3:Optimal schedules favor maximum carrier re-use. Example of a tag-augmented
IoT network and two possible schedules: the optimal schedule that maximizes carrier re-
use while minimizing schedule length, and a sub-optimal schedule, which requires two
timeslots. This is because the carriers from 𝑣0 and 𝑣2 interfere at𝑇2 in 𝑠1 , preventing
it from being interrogated and forcing an additional timeslot for that purpose.

the tags, one must devise an efficient communication schedule for
tag interrogations [41, 43]. A single tag interrogation corresponds
to a request-response cycle between an IoT node and one of its
hosted battery-free sensor tags, while exactly one of its neighbor-
ing IoT nodes provides an unmodulated carrier. More than one
unmodulated carrier impinging on any tag causes interference and
prevents proper interrogation. Provided that collisions are avoided,
scheduling multiple tag interrogations concurrently reduces the
schedule’s length, improving latency and throughput in the net-
work (see Fig. 3). Furthermore, scheduling one unmodulated carrier
to serve multiple tags simultaneously greatly reduces the required
energy and spectrum occupancy.

Computing the optimal schedule—minimizing the number of
times nodes must generate carriers and minimizing the duration
of the schedule—is an NP-hard combinatorial optimization prob-
lem [41]. At first glance, tag scheduling is similar to classic wireless
link scheduling in that collisions among data transmissions must be
avoided by considering the network topology. Carrier scheduling
differs, however, in that we must additionally select appropriate
carrier generators while avoiding collisions caused by them upon
their neighbors. Simultaneously, we must also minimize resource
utilization. The only known scalable solution is a carefully crafted
heuristic, which suffers from suboptimal performance [41]. This
results in wasted energy and spectral resources, particularly as
network sizes grow. We refer to this heuristic as the TagAlong
scheduler [43] hereafter. Alternatively, one can compute optimal
solutions using a constraint optimization solver. We will refer to
this scheduler as the optimal scheduler. This scheduler, however,
takes a prohibitively long time as network sizes grow, which limits
the capacity to adapt to network topology changes. For example,
computing a schedule for a network of 10 nodes and 14 tags can
take up to several hours.

In this paper, we leverage Deep Learning (DL) methods to over-
come both the scalability limitations of the optimal scheduler and



DeepGANTT: A Scalable Deep Learning Scheduler for Backscatter Networks IPSN ’23, May 9–12, 2023, San Antonio, TX, USA

the performance shortcomings of the TagAlong scheduler. However,
the DL approach presents its own set of challenges. First, traditional
DL methods that have succeeded on problems with fixed structure
and input/output sizes (e.g., images and tabular data) are not ap-
plicable to the carrier scheduling problem since the latter operates
on an irregular network structure, the size of which depends on
the number of IoT nodes and sensor tags. Hence, using traditional
DL methods would require training separate schedulers for differ-
ent network sizes. Second, any given IoT network configuration
may have many equivalent optimal solutions, which can confuse
Machine Learning (ML) models during training. This is due to
symmetries inherent to the carrier scheduling problem, i.e., the
schedules are invariant to timeslot permutations.

Approach. In this work, we present Deep Graph Attention-based
Network Time Tables (DeepGANTT), a new scheduler that builds
upon recent advances in DL to efficiently schedule the communi-
cations of battery-free tags and the supporting carrier generation
in a network of IoT devices interoperating with battery-free tags.
DeepGANTT receives as input the network topology represented
as a graph, and generates a corresponding interrogation sched-
ule (Fig. 1). The graph representation of the network assumes there
is a link between two IoT nodes if and only if there is sufficient
signal strength between them for providing an unmodulated carrier.
DeepGANTT iteratively performs one-shot node classification of
the network’s IoT devices to determine the role each of them will
play within every schedule timeslot: either remain off (O), interro-
gate one of its tags (T), or generate a carrier (C), while also avoiding
collisions in the network. The objective of the carrier scheduling
problem is to reduce the resources needed to interrogate every tag
in the network. By minimizing the number of carrier generation
slots in the schedule, we reduce energy and spectrum occupancy. As
a secondary objective, minimizing the number of required timeslots
improves latency and throughput.

We adopt a supervised learning approach based on Graph Neural
Networks (GNNs) instead of other paradigms such as reinforcement
learning. This choice is mainly motivated by three facts. First, we
can leverage the optimal scheduler to generate the training data
necessary for a supervised approach. Second, GNNs are particularly
successful in handling irregularly structured, variable-size input
data such as network topology graphs [13, 28, 44]. GNNs provide a
natural way of capturing the interdependence among neighboring
nodes across multiple hops, crucial to avoid collisions. Third, it is
straightforward to cast the scheduling problem as a classification
task, which is generally tackled with a supervised approach [3, 35].

The use of GNNs allows us to train DeepGANTT only once
using a set of network topologies, to then perform inference in
other, previously unseen, network topologies of different size and
structure. To train our scheduler, we generate random network
topologies small enough for the optimal scheduler to handle. To
avoid the pitfalls of training with multiple optimal solutions per
instance, we add symmetry-breaking constraints to the optimal
scheduler. Such constraints alter neither the true constraints, nor
the objective of the problem. Instead, they narrow the choices of the
solver from potentially many equivalent optimal solutions down to
a single consistent one. For example, in tag scheduling, the order in
which tags are interrogated is irrelevant. Nevertheless, by adopting

a specific order (e.g., decreasing order of tag ID) we reduce the
number of solutions from the factorial of the number of tags to one.

Contributions.We make the following specific contributions:
• We present DeepGANTT, the first fast and scalable DL sched-
uler that leverages GNNs to obtain near-optimal solutions
to the carrier scheduling problem.

• We employ symmetry-breaking constraints to limit the solu-
tion space of the carrier scheduling problemwhen generating
the training data using the optimal scheduler.

• DeepGANTT performs within 3% of the optimum in trained
network sizes. Without the need to retrain, it scales to 6×
larger networks while reducing carrier generation slots by
up to 50% compared to the state-of-the-art heuristic. This
directly translates to energy and spectrum savings.

• We use DeepGANTT to compute schedules for a real net-
work topology of IoT devices. Compared to the heuristic, our
scheduler reduces the energy per tag interrogation by 13%
in average and up to 50% for large tag deployments.

• DeepGANTT’s inference time is polynomial on the input
size, achieving on average 429ms and always below 1.5 s; a
radical improvement over the optimal scheduler.

We show that DeepGANTT computesmore resource-efficient sched-
ules than the TagAlong scheduler, and that these are almost as
good as those of the optimal scheduler (see Fig. 2). Moreover, Deep-
GANTT breaks the scalability limitations of the optimal scheduler
by generating schedules for considerably larger backscatter net-
works while still reducing the energy consumption and spectrum
occupancy compared to the heuristic. Finally, our scheduler’s low
inference times facilitates timely reactions to changes in topology
and radio propagation conditions.

The rest of the paper is organized as follows. Sec. 2 gives back-
ground information that is useful to understand the paper. Sec. 3
formally describes the carrier scheduling problem. Sec. 4 details the
design of DeepGANTT, while Sec. 5 discusses the implementation
and training of the model. In Sec. 6, we evaluate DeepGANTT’s
performance against previous alternatives and prove that it can also
compute schedules for a real IoT network. Sec. 7 discusses practical
aspects and limitations of our scheduler. Lastly, we discuss related
work in Sec. 8 and conclude our work in Sec. 9.

2 BACKGROUND
This section gives a quick overview of backscatter communications
and the concept of tag-augmented IoT networks, with an intuitive
introduction to GNNs.

2.1 Backscatter Communications
Backscatter communication devices are highly attractive because
their characteristic low power consumption enables them to operate
without batteries. Instead, they can sustain themselves by collecting
energy from their environment using various energy harvesting
modalities. This kind of device achieves its low power consumption
by offloading some of the most energy-intensive functions, such as
the local oscillator, to an external device that provides an unmodu-
lated carrier. Recent works have extended this principle to enable
battery-free tags capable of direct two-way communications with
unmodified COTS wireless devices using standard protocols such as



IPSN ’23, May 9–12, 2023, San Antonio, TX, USA Perez-Ramirez, et al.

IEEE 802.15.4/ZigBee or Bluetooth, when supported by an external
carrier [9, 22, 25, 26, 40, 43, 46]. Previous works have demonstrated
systems that apply these battery-free communication techniques
to augment an existing network of COTS wireless devices with
battery-free tags [40, 41, 43]. We refer to this architecture as a tag-
augmented IoT network. It enables placing sensors in hard-to-reach
locations without having to worry about wired energy availability
or battery maintenance.

We adopt a model where each tag is associated with (or hosted
by) one IoT node responsible for interrogating it to collect sensor
readings. Every IoT node in the network may host zero or more
tags, and these are located in close proximity (within decimeters)
of their host. The IoT nodes in the network are equipped with radio
transceivers that support standard physical layer protocols such
as IEEE 802.15.4/ZigBee or Bluetooth. They are able to provide
an unmodulated carrier (by using their radio test mode [40]) and
employ a time-slotted medium access mechanism. The use of a time-
slotted access mechanism is motivated by its standardized use in
commodity IoT devices [4, 21], and its simplicity for integrating the
battery-free tags in the network. By design, a time-slotted access
mechanism prevents channel collisions among tags hosted by an
IoT node, as the node can communicate with only one of its tags in
each timeslot (e.g., see how 𝑣1 queries tags 𝑇1 and 𝑇6 in Fig. 1). The
duration of a timeslot is sufficient for an IoT node to interrogate one
tag by transmitting a request directed to the desired tag and receiv-
ing the response. Fig. 4a shows a tag interrogation procedure from
an IoT node 𝑣 𝑗 when assisted by an unmodulated carrier from node
𝑣𝑖 . First, the carrier providing node 𝑣𝑖 listens for a period 𝑡𝑟𝑒𝑞 for a
request from the interrogating node 𝑣 𝑗 at its assigned timeslot in
the schedule. Upon the request arrival, 𝑣𝑖 provides a carrier for the
duration 𝑡𝑐𝑔 . The interrogating node 𝑣 𝑗 transmits its request to one
of its hosted tags 𝑇 , after which the tag transmits its response back
to 𝑣 𝑗 . As shown in Fig. 4b, the short communication range of the
tags enables re-using an unmodulated carrier to perform multiple
concurrent tag interrogations within a timeslot. However, for an IoT
node to interrogate one of its hosted tags, exactly one of its neigh-
boring IoT nodes must provide an unmodulated carrier [41, 43].
Multiple impinging carriers from neighboring nodes would cause
interference on the tag, thus preventing proper communication
between the tag and its host [43].

For these reasons, a schedule is required to coordinate how the
IoT nodes cooperate among each other for providing the unmod-
ulated carrier needed to interrogate their hosted tags. When not
querying the backscatter tags, the network of IoT nodes performs its
own computation and communication tasks according to its regular
schedule. An interrogation schedule consists of one or more sched-
uling timeslots, each assigning one of three roles to every IoT node
in the network: provide an unmodulated carrier (C), interrogate one
of its hosted sensor tags (T), or remain idle (O). Existing studies have
shown how the IoT nodes invest energy to provide carrier support
in proportion to the number of carrier slots (C) scheduled, and that
tags add latency proportionally to the length of the interrogation
schedule [41]. As a consequence, it is critical that we optimize the
way unmodulated carrier support is provided (see Fig. 3). For this
reason, in this work, we focus on the efficiency of the scheduler,
given that it bears total influence on resource expenditure. At least
one of the IoT nodes in the network is connected to a cloud or edge

Timeslot

rx

tx(req)

rx

rx

tx(data)

(a) Tag uplink and downlink communication within a timeslot 𝑠 .

~meters

~dm's~dm's

Tag communication range
Carrier provisioning

(b) Carrier re-use enabled by tags’ short communication range.

Figure 4: The duration of a timeslot is sufficient for an IoT device to interrogate one tag by
transmitting a request directed to the desired tag and receiving the response. Furthermore,
we leverage the short tag communication range to use one carrier provider to perform
multiple tag interrogations across nodes in the network.

server where the interrogation schedule is computed. By keeping
track of link state and node neighborhood information obtained
from the physical layer and routing protocol, the IoT nodes can de-
termine the connectivity graph among themselves. For purposes of
tag interrogation, an edge between two IoT nodes in the connectiv-
ity graph represents a sufficiently strong wireless signal for carrier
provisioning. This information can be relayed periodically or on
demand to the cloud or edge server, where it is, together with the
tag-to-host mapping, used to assemble the graph representation of
the wireless network. Our scheduler uses this graph representation
to produce a schedule, as depicted in Fig. 1.

2.2 Graph Neural Networks
GNNs have emerged as a flexible means to tackle various inference
tasks on graphs, such as node classification [15, 44, 55]. Intuitively,
stacking 𝐾 GNN layers corresponds to generating node embedding
vectors taking into account its 𝐾-hop neighborhood by leveraging
the structure of the graph and inter-node dependencies [13, 28].
These embeddings are typically further processed with linear layers
to produce the final output according to the task of interest. For
example, one might perform node classification by passing each
node embedding vector through a classification layer. Formally,
given a graph 𝐺 = ⟨𝑉 , 𝐸⟩ defined by the sets of nodes 𝑣 ∈ 𝑉 and
edges (𝑣,𝑢) ∈ 𝐸, at GNN layer 𝑖 each node feature vector ℎ𝑣 is
updated as:

ℎ
(𝑖 )
𝑣 = 𝑓1

(
ℎ
(𝑖−1)
𝑣 , AGG

𝑢∈N(𝑣)

[
𝑓2
(
ℎ
(𝑖−1)
𝑢

)] )
, (1)

where N(𝑣) is the set of neighboring node feature vectors of
node 𝑣 , AGG is a commutative aggregation function, and 𝑓1, 𝑓2 are
non-linear transformations [13]. Among the main advantages of
using GNNs over traditional DL methods are their capability to



DeepGANTT: A Scalable Deep Learning Scheduler for Backscatter Networks IPSN ’23, May 9–12, 2023, San Antonio, TX, USA

exploit the structural dependencies of the graph. Furthermore, they
are an inductive reasoning method, i.e., GNNs can be deployed to
perform inference on graphs other than those seen during training
without the need to re-train the model [16, 49, 50].

3 PROBLEM FORMULATION
This section formally describes the carrier scheduling problem, i.e.,
efficiently scheduling the communications of sensor tags and the
supporting carrier generation in a network of IoT nodes interop-
erating with battery-free tags. We hereon refer to the IoT devices
and to the sensor tags in the network simply as nodes and tags,
respectively. We model the wireless IoT network as an undirected
connected graph 𝐺 , defined by the tuple 𝐺 = ⟨𝑉𝑎, 𝐸⟩, where 𝑉𝑎 is
the set of 𝑁 nodes in the network𝑉𝑎 = {𝑣𝑖 }𝑁−1

𝑖=0 , and 𝐸 is the set of
edges between the nodes 𝐸 = {⟨𝑢, 𝑣⟩|𝑢, 𝑣 ∈ 𝑉𝑎}.

The connectivity among nodes in the graph (edges set 𝐸) is de-
termined by the link state information collected as described in
Section 2.1, i.e., there is an edge between two nodes if and only
if there is a sufficiently strong wireless signal for providing the
unmodulated carrier [41, 43]. We denote the set of 𝑇 tags in the
network as 𝑁𝑇 = {𝑇𝑚}𝑇−1

𝑚=0, and their respective tag-to-host assign-
ment as 𝐻𝑇 : 𝑇𝑚 ∈ 𝑁𝑇 ↦→ 𝑣𝑖 ∈ 𝑉𝑎 . A node can host zero or more
tags. The role of a node 𝑣𝑖 within a timeslot 𝑠 is indicated by the
map 𝑅𝑣𝑖,𝑠 : 𝑣𝑖 ∈𝑉𝑎, 𝑠 ∈ [1, 𝐿] ↦→ {C, T, O}, where 𝐿 is the schedule
length in timeslots. Hence, a timeslot vector 𝑠 𝑗 is an 𝑁 -dimensional
vector containing the roles assigned to every node during the times-
lot: 𝑠 𝑗 =

[
𝑅𝑣𝑖, 𝑗 |∀𝑣𝑖 ∈ 𝑉𝑎

]⊤, so 𝑗 =̂ 𝑠 ∈[1, 𝐿]. A timeslot duration is
long enough to complete one interrogation request-response cycle
between a node and a tag (see Fig. 4a).

For a given problem instance (wireless network configuration)
defined by the tuple 𝑔 = ⟨𝐺, 𝑁𝑇 , 𝐻𝑇 ⟩, the Combinatorial Optimiza-
tion Problem (COP) of interrogating all sensor values in the network
once using the lowest number of carrier generators and timeslots
is formulated as follows:

min (𝑇 ×𝐶 + 𝐿) (2)
s.t. ∀𝑇𝑚 ∈𝑁𝑇 ∃! 𝑠 ∈ [1, 𝐿] : 𝑅𝐻𝑇 ,𝑠 = T (3)

∀ 𝑠 ∈ [1, 𝐿] ∀𝑇𝑚 ∈𝑁𝑇 | 𝑅𝐻𝑇 ,𝑠 = T

∃! 𝑣𝑖 ∈𝑉𝑎 : 𝑅𝑣𝑖,𝑠 = C ∧ (𝐻𝑇 , 𝑣𝑖 ) ∈ 𝐸 , (4)

where𝐶 is the total number of carriers required in the schedule, i.e.,
𝐶 =

��{𝑅𝑣𝑖,𝑠 = C : 𝑣𝑖 ∈𝑉𝑎, 𝑠 ∈ [1, 𝐿]}
��. Constraint (3) enforces that tags

are interrogated exactly once in the schedule. Additionally, con-
straint (4) prevents channel collisions among carriers by ensuring
that there is only one carrier-providing neighbor per interrogated
tag in each timeslot. The objective function (2) is designed to pri-
oritize reducing the number of carrier slots (𝐶) over the duration
of the schedule (𝐿). This is because we are most concerned with
energy and spectrum efficiency and because a reduction of 𝐶 often
implies a reduction of 𝐿, but the converse is not necessarily true.
For example, in Fig. 1, 𝑣2 provides a carrier to interrogate 𝑇1 and
𝑇3, reducing 𝐶 and 𝐿 simultaneously.

4 SYSTEM DESIGN
In this section, we first introduce the design considerations for Deep-
GANTT to cope with the wireless network requirements and the

challenges in carrier scheduling. We then introduce DeepGANTT’s
system architecture.

4.1 Design Considerations
DeepGANTT is deployed at an edge or cloud server, where sched-
ules are computed on demand for the IoT network. At least one
of the IoT nodes in the network is assumed to be connected to
the Edge/Cloud server, and it is responsible for building the IoT
network topology graph, emitting the request to the scheduler in
the Edge/Cloud, and disseminate the computed schedule to the
other devices. The DeepGANTT scheduler receives as input the
IoT network configuration as the tuple 𝑔 = ⟨𝐺, 𝑁𝑇 , 𝐻𝑇 ⟩, i.e., the
wireless network topology𝐺 and the set of tags 𝑁𝑇 in the network
with their respective tag-to-host assignment 𝐻𝑇 . The scheduler
then generates the interrogation schedule 𝑆 = [𝑠 𝑗 ]𝐿𝑗=1 and delivers
it to the IoT network. The scheduler may receive subsequent sched-
ule requests by the IoT network either upon addition/removal of
nodes or tags, or upon connectivity changes among the IoT nodes.
Thus, DeepGANTT must be able to react fast to structural and
connectivity changes in the wireless network.

From an ML perspective, every possible configuration of 𝑔 yields
a different graph representation with different connectivity and
potentially different input size. Likewise, the output for 𝑔 (schedule
𝑆𝑔) may vary in size in terms of both the number of timeslots 𝐿 and
the number of nodes 𝑁 in the topology (since 𝑠 𝑗 ∈R𝑁∀𝑗 ∈ [1, 𝐿]).
Moreover, at each timeslot, every node is assigned to one of three
possible actions {C, T, O} (see Section 2.1) based on its neighborhood.

We use a GNN-based learning approach to allow DeepGANTT
to process variable-sized inputs (network topology) and output
(interrogation schedule) sequences while learning the local depen-
dencies of a node in the network (see Sec. 2.2). For carrier sched-
uling, exploiting the structural dependencies of the nodes’ 𝐾-hop
neighborhood allows to efficiently schedule carriers while avoiding
interference. Moreover, the use of GNNs allow us to train the ML
model only once, and then deploy it without the need to retrain for
previously unseen network configurations in terms of the number
of nodes 𝑁 , their connectivity, and the number of sensor tags 𝑇 .

4.2 System Architecture
We model the carrier scheduling problem as an iterative one-shot
node classification problem. The inner workings of DeepGANTT
are illustrated in Fig. 5a: on each iteration 𝑗 , DeepGANTT’s in-
ference module assigns each node in the topology to one of three
classes corresponding to the possible node actions: {C, T, O}. Hence,
each iteration 𝑗 generates a timeslot vector 𝑠 𝑗 . Each predicted times-
lot is checked for compliance with the constraints in Eq. 3 and 4.
After each iteration, the topology’s node feature matrix 𝑋 (0)

𝑗
is

updated by removing one tag from the nodes that were assigned
class T (interrogate). This process is repeated until all tags have
been removed from the cached network configuration.

The DeepGANTT scheduler consists of three submodules, as
depicted in Fig. 5b. The Orchestrator is DeepGANTT’s coordinating
unit and interacts with the outside world through its communi-
cation port. It receives the necessary information from the IoT
network, including the network’s link and routing layer informa-
tion to construct the topology graph 𝐺 . The Orchestrator is also



IPSN ’23, May 9–12, 2023, San Antonio, TX, USA Perez-Ramirez, et al.

Inference
Module

End

Start

Inference
Module

Inference
Module

(a) DeepGANTT iteratively performs one-shot node classification, one timeslot
at a time, removing scheduled tags from the topology and repeating the process
until no more tags remain.

DeepGANTT

Topology
Handler

Orchestrator

timeslot
vector

state

network
description

schedule

commands

comm. port

Inference
Module

(b) The three core components of DeepGANTT interact among themselves and
with the exterior to generate schedules.

Figure 5: DeepGANTT’s system architecture and the Inference Module’s procedure to
generate schedules.

responsible for providing the problem description to the Topology
Handler and interfacing with the Inference Module. The Topology
Handler maintains the problem description, provides it to the In-
ference Module in a format suitable for the ML model, and updates
its state according to the predicted timeslots. Since the Inference
Module is trained on the basis of a stochastic process, the Topology
Handler includes a fail-safe functionality to make sure that the
predictions comply with the constraints in Eqs. (3) and (4). In case
of failure, the Topology Handler restores compliance by randomly
shuffling tag and node IDs and retrying. This does not alter the
final schedules.

4.3 Input Node Features
At timeslot 𝑗 , the Inference Module receives as input a node feature
matrix 𝑋 (0)

𝑗
∈ R𝑁×𝐷 containing the row-ordered node feature

vectors 𝑥 (0)
𝑖, 𝑗

∈ R𝐷 ,∀𝑖 ∈ 𝑉𝑎 , where 𝐷 represents the number of
features representing a node’s input state. Since the tags lie in the
close proximity of a node, and each of them interacts only with
their host, we model them as a feature in their host’s input feature
vector. One can also include additional features to assist the GNN
during inference. Hence, we consider three different node features:

• Hosted-Tags: the number of tags hosted by a node.
• Node-ID: integer identifying a node in the graph.
• Min. Tag-ID: the minimum tag ID among tags hosted by a
node. Since a node can host several tags, the min. Tag-ID
represents only the lowest ID value among its hosted tags.

Intuitively, the number of tags hosted by a node is decisive for
assigning carrier-generating nodes. For example, if one node hosts
all tags, this node should never provide an unmodulated carrier in
the schedule. Similarly, the node hosting the greatest number of tags
is unlikely to be a carrier provider in the schedule. For this reason,
Hosted-Tags is always included as an input node feature. Moreover,
including the node-ID and the minimum tag-ID can provide the
scheduler with context on how to prioritize carrier-provider nodes,
and with an order to interrogate the tags.

4.4 Inference Module
The Inference Module is the learning component of DeepGANTT
and contains the ML model for performing inference. In the follow-
ing, we describe in detail the Inference Module’s ML architectural
components depicted in Fig. 6.

Embedding. The input node feature matrix 𝑋 (0)
𝑗

is first trans-
formed by an Embedding component with the aim to assist the
subsequent message-passing operations in performing better injec-
tive neighborhood aggregation. That is, enabling each node to better
distinguish each of its neighbors’ contributions. The embedding
transformation of 𝑋 (0)

𝑗
is described by:

𝐻
(0)
𝑗

= LN
(n [

𝑋
(0)
𝑗
, FNN𝑒

(
𝑋

(0)
𝑗

)] )
, (5)

where LN corresponds to the layer normalization operation from
Ba et al. [1], and

f
represents the concatenation operation. FNN𝑒

corresponds to a fully-connected neural network layer (FCNN) with
a non-linear transformation as:

FNN𝑒 (𝑋 (0)
𝑗

) = LeLU
(
FCNN𝑒 (𝑋 (0)

𝑗
)
)

(6)

FCNN𝑒 (𝑋 (0)
𝑗

) =𝑋 (0)
𝑗
𝑊𝑒 + 𝑏𝑒 , (7)

with the leaky ReLU operator LeLU and NN parameters𝑊𝑒 ∈
R𝐷×𝐷𝑒 , 𝑏𝑒 ∈ R𝐷𝑒 . The embedding outputs the node feature matrix
𝐻

(0)
𝑗

∈ R𝑁×(𝐷+𝐷𝑒 ) .
Stacked GNN Blocks. The output from the embedding com-

ponent 𝐻 (0)
𝑗

represents the input to a stack of 𝐾 GNN blocks
{𝐵 (𝑖+1) }𝐾−1

𝑖=0 . The inner structure of each GNN block is depicted in
the lower part of Fig. 6. We stack 𝐾 different GNN blocks to allow
nodes to receive input from their𝐾-hop transformed neighborhood.
Moreover, we select summation as the aggregation operation (see
Eq. 11) motivated by the results of Hamilton et al. [16]. Each GNN
block 𝐵 (𝑖+1) receives as input the previous layer output 𝐻 (𝑖 )

𝑗
and

performs the following operations:

𝐻
(𝑖+1)
𝑗

=B(𝑖+1) (𝐻 (𝑖 )
𝑗

) (8)

B(𝑖+1) (𝐻 (𝑖 )
𝑗

) = LN
(
�̃�

(𝑖+1)
𝑗

+ FNN(𝑖+1)
𝐵

(
�̃�

(𝑖+1)
𝑗

))
(9)

�̃�
(𝑖+1)
𝑗

= LN
(
𝐻

(𝑖 )
𝑗

+ G(𝑖+1) (𝐻 (𝑖 )
𝑗

)
)
. (10)

Eq. 10 corresponds to a multi-head self-attention GNN activation
G(𝑖+1) followed by an Addition&Normalization component in Fig. 6.
Subsequently, Eq. 10 implements a per-node FCNN with a non-
linear transformation, followed by another Add&Norm component.
Analogous to Eq. 7, each block’s per-node FNN(𝑖+1)

𝐵
has parameters

𝑊
(𝑖+1)
𝑏

and 𝑏 (𝑖+1)
𝑏

followed by a leaky-ReLU.



DeepGANTT: A Scalable Deep Learning Scheduler for Backscatter Networks IPSN ’23, May 9–12, 2023, San Antonio, TX, USA

The operation G(𝑖+1) in Eq. 10 implements a scaled dot-product
multi-head self-attention GNN [45, 48]. Each of the 𝑁 row-ordered
node feature vectors 𝐻 (𝑖 )

𝑗
= {ℎ (𝑖 )

𝑗,𝑡
}𝑁−1
𝑡=0 is updated at GNN layer

G(𝑖+1) by the following message-passing operation (for simplicity,
we omit the timeslot subscript 𝑗 ):

ℎ
(𝑖+1)
𝑡 = FCNN(𝑖+1)

𝑢𝑝𝑡

(
ℎ
(𝑖 )
𝑡

)
+

𝑀n

𝑚=1


∑︁

𝑝∈N(𝑡 )
𝛼
(𝑖+1)
𝑚,𝑡𝑝 𝑣

(𝑖+1)
𝑚,𝑝

 (11)

𝑣
(𝑖+1)
𝑚,𝑡 = FCNN(𝑖+1)

𝑚,𝑣𝑎𝑙

(
ℎ
(𝑖 )
𝑡

)
(12)

𝛼
(𝑖+1)
𝑚,𝑡𝑝 =

Γ
(
𝑞
(𝑖+1)
𝑚,𝑡 , 𝑘

(𝑖+1)
𝑚,𝑝

)
∑

𝑢∈N(𝑡 )
Γ
(
𝑞
(𝑖+1)
𝑚,𝑡 , 𝑘

(𝑖+1)
𝑚,𝑢

) (13)

𝑞
(𝑖+1)
𝑚,𝑡 = FCNN(𝑖+1)

𝑚,𝑞𝑟𝑦

(
ℎ
(𝑖 )
𝑡

)
(14)

𝑘
(𝑖+1)
𝑚,𝑡 = FCNN(𝑖+1)

𝑚,𝑘𝑒𝑦

(
ℎ
(𝑖 )
𝑡

)
(15)

Γ (𝐴, 𝐵) =
exp

(
𝐴⊤𝐵

)
√
𝑑

, 𝐴, 𝐵 ∈ R𝑑 . (16)

Eq. 11 is the main node update operation for each node, consisting
of adding two parts. First, a transformation of the target node’s
feature vector through FCNN(𝑖+1)

𝑢𝑝𝑡 . Second, the concatenated 𝑀-
heads of the attention operations with the target node’s neighbors.
Each self-attention operation𝑚 consists of a weighted sum over
transformed neighboring node feature vectors 𝑣 (𝑖+1)𝑚,𝑡 , inspired by
the attention operations by Vaswani et al. [48]. Each of the neigh-
bors’ node feature vectors are transformed by the layer FCNN(𝑖+1)

𝑚,𝑣𝑎𝑙

in Eq. 12. The weights 𝛼 (𝑖+1)
𝑚,𝑡𝑝 at attention head𝑚 from neighbor

source 𝑝 to target update node 𝑡 are obtained through Eq. 13 over the
scaled dot product operation Γ (Eq. 16) between query 𝑞 (𝑖+1)𝑚,𝑡 and
key 𝑘 (𝑖+1)𝑚,𝑡 transformations of the target node (see Eq. 14) and the
source neighbor node (see Eq. 15), respectively. There are multiple
reasons motivating the use of attention. First, it allows to leverage
neighboring nodes’ contributions differently. Second, attention has
provided better results for node classification tasks [49] compared
to isotropic GNNs [16, 28]. Moreover, conventional GNN node clas-
sification benchmarks assume that nodes in a spatial locality of the
graph assume similar labels and leverage the fixed-point theorem
property in stacking GNNs [28]. This greatly contrasts with the
carrier scheduling problem, in which neighboring nodes are mostly
expected to have different classes (a node provides a carrier, neigh-
bors interrogate tags). Finally, attention serves as a counteracting
factor for this property when combined with skip-connections: it
builds deeper networks that can learn contrasting representations
at each layer.

Classification Layer. The output from the 𝐾 GNN blocks is
then fed to a FCNN followed by a Softmax for obtaining a per-
node probability distribution over the classes that correspond to
the possible node actions {C, T, O}. Finally, each node is assigned to
the class with the highest probability.

GNN
Block-1

GNN
(self-attn) 
G(i+1) Li

ne
ar

-k

Em
be

dd
in

g

GNN
Block-K...

C
on

ca
t &

 N
or

m

Li
ne

ar
En

d

Block B(i+1)

A
dd

 &
 N

or
m

A
dd

 &
 N

or
m

Inference Module
Input Node

Feature Matrix
Schedule
Timeslot

Figure 6: The Inference Module implements DeepGANTT’s ML model. At its core, there
are 𝐾 self-attention GNN blocks.

Note that all parameters from the Inference Module listed (Eqs.
5–15) are shared across timeslots 𝑠 𝑗 .

5 LEARNING TO SCHEDULE
This section explores how the InferenceModule’s ability to compute
interrogation schedules is influenced by two factors. On one hand,
the interdependence between the choice of input node features
and on the other the configuration of the training data generation.
Additionally, we explore the influence of ML model complexity
in terms of the number of GNN blocks on the Inference Module’s
performance. This exploratory analysis resulted in selecting an
Inference Module composed of 12 GNN blocks.

5.1 Training Data Generation
The carrier scheduling problem, as described in Eqs. 2-4, presents
symmetries that result in multiple optimal solutions which confuse
the DL model while training. In the following, we describe how we
leverage symmetry-breaking constraints in the constraint optimizer
to generate a training dataset with unique optimal solutions.

As an example of these symmetries consider that: because the
order of the timeslots in the schedule is irrelevant, a schedule of
duration 𝐿 is equivalent to 𝐿! other schedules. A similar set of
symmetries appears among all tags hosted by the same node as
the order of interrogating them is also irrelevant. To make matters
worse, a given set of tags can often be served by more than one
carrier generator, therefore introducing more symmetries.

Symmetry-Breaking Constraints. To overcome the confusion
that these symmetries might cause to a learning-basedmodel during
training, we further constrain the carrier scheduling problem in a
way that eliminates symmetries but does not otherwise alter the
problem. To that end, we enforce lexicographical minimization of
a vector of length 𝑇 that indicates the timeslot where each tag
is scheduled. This automatically eliminates symmetries related to
the order of tag interrogations. Similarly, we also lexicographically
minimize another length-𝑇 vector containing the node that provides
the carrier for each tag; which eliminates symmetries related to
multiple potential carrier nodes.



IPSN ’23, May 9–12, 2023, San Antonio, TX, USA Perez-Ramirez, et al.

Table 1: The interrelation between data generation and input node features strongly impact the model’s performance. Including symmetry-breaking constraints dramatically improves the
model performance. Interdependence of data generation and input feature configuration for an Inference Module of six GNN-Blocks. 𝑆𝑐𝑜𝑟𝑟 indicates percentage of problem instances
for which the NN delivers a complete schedule. F1-score is provided for C (carrier class).

Symmetry breaking: Disabled Enabled
Performance Metric [%]: Accuracy F1-score 𝑆𝑐𝑜𝑟𝑟 Accuracy F1-score 𝑆𝑐𝑜𝑟𝑟

Features-1 (Hosted-Tags): 85.69 57.78 27.04 86.61 60.54 10.11
Features-2 (Hosted-Tags + Node-ID + Min. Tag-ID.): 86.40 59.82 47.96 99.22 97.36 99.64

5.2 ML Model Validation Setup
We implement all components in the Inference Module using Py-
Torch [39]. For theGNNs layersG(𝑖+1) , we use the PyG self-attention
based GNN TransformerConv implementation [11].

Input Features. We consider two different feature configura-
tions for the input node feature matrix 𝑋 (0)

1 ∈ R𝑁×𝐷 : Features-1
includes only the Hosted-Tags (𝐷 = 1), and Features-2 considers
Features-1 plus the Node-ID and minimum Tag-ID among the tags
hosted by a node (𝐷 = 3).

Validation Dataset.We generate small-sized problem instances
of varying sizes and number of tags from two to ten nodes (𝑁 ∈
[2, 10]), and hosting one to 14 tags (𝑇 ∈ [1, 14]). We generate
these graphs using the random geometric graph generator from
NetworkX [14] to guarantee that these graphs can exist in 3D space.
As the network size varies, we make sure to maintain a constant
network spatial density. We uniformly assign tags to hosts at ran-
dom. We employ a constraint optimizer to compute solutions for
a total of 520000 problem instances both including and without
including the symmetry-breaking constraints. As constraint opti-
mizers, we employ MiniZinc [36] and OR-Tools [42]. The problem
instances are divided into a train-set and a validation-set using a
80%-20% split. Since we perform a per-node classification for every
scheduling timeslot (see Fig. 5a), we further consider each timeslot
input-target pair (𝑋 (0)

𝑗
, 𝑠 𝑗 ) as a training sample, which yields an

approximate total of 1.5 million samples.
Validation Metrics.We consider both ML metrics and an appli-

cation related metric to evaluate a model’s performance. From the
ML perspective, we employ overall accuracy, and the carrier class
(C) F1-score due to its crucial role in avoiding signal interference
for tag interrogation. For the application-related metric we con-
sider the percentage of correctly computed schedules 𝑆𝑐𝑜𝑟𝑟 . This
metric indicates the percentage of problem instances for which
the already-trained ML model produces a complete (all timeslots)
and correct (fulfilling carrier scheduling constraints) schedule. At
inference time, the Topology Handler handles these unlikely cases
as described in Section 4.2.

5.3 ML Model Training
We train the Inference Module with the Adam optimizer [27] on the
basis of mini-batch gradient descent with standard optimizer param-
eters and an initial learning rate of 10−3. The ML model should give
greater importance to the carrier-generating node class (C) since it
can subsequently determine the tags that can be interrogated or not
due to signal interference. Hence, we build upon the cross-entropy
loss for classification and propose an additional factor to account

3-Blocks 6-Blocks 9-Blocks 12-Blocks 15-Blocks
94
96
98

100

M
et

ric
 [%

]

Accuracy F1-score Scorr

Figure 7: Increasing the number of GNN-Blocks improves the performance of the NN
model. The NN reaches a saturation point for the F1-score at approx. 12 layers.

for greater importance to the carrier class (C) based on the L1 norm
between the prediction and the ground-truth:

𝐿𝑏𝑎𝑡𝑐ℎ =
1
𝑁𝑏

𝑁𝑏−1∑︁
𝑖=0

©«©«−
∑︁

𝑘∈{C,T/O}
𝑦𝑖𝑘 log(𝑦𝑖𝑘 )

ª®¬ × 𝑒 | | (�̂�𝑖==C)−(𝑦𝑖==C) | |1ª®¬
+ 𝜌 | |�̂� | |22 (17)

where𝑁𝑏 is the number of nodes in the mini-batch,𝑦𝑖 and𝑦𝑖 are the
ground-truth and model prediction of mini-batch sample 𝑖 , respec-
tively, 𝜌 is the regularization hyperparameter, and �̂� represents a
tensor containing all the learning parameters undergoing gradient
descent. We implement untunned warmup as presented by Ma &
Yarats [32], followed by learning rate decay by 2% every epoch, and
early stopping after 25 subsequent epochs without minimization
of the test loss. We save the best-performing model on the basis of
the F1-score.

5.4 Validation Results
The Inference Module considered for evaluating data generation
strategies and node feature representation consists of six GNN-
blocks.We empirically chose the number of GNN-blocks for the first
experiments based on a trade-off between model training time and
performance. After establishing the best combination of input node
feature representation and data generation strategy, we analyze the
influence in performance of ML model complexity.

5.4.1 Data Generation and Input Features Interdependence. The
influence of both input node feature representation and data gen-
eration configuration in model performance is depicted in Table 1.
Regardless of the data-generating configuration, an enriched node
feature representation (including more node features) leads to an
increase in accuracy and F1-score. There are two possible reasons
for this. First, by increasing the node feature dimension 𝐷 , we
ensure that the GNNs can perform more efficient injective neigh-
borhood aggregation (to better distinguish neighboring node con-
tributions). This is realized by making it less likely for two nodes
to have the same input feature vector to the GNN. Second, both
the Nodes-ID and Tags-ID feature serve as a node’s positional en-
coding information in a graph, a property that assists the model



DeepGANTT: A Scalable Deep Learning Scheduler for Backscatter Networks IPSN ’23, May 9–12, 2023, San Antonio, TX, USA

in breaking graph symmetries [8, 57]. Additionally, an enriched
node feature representation leads to an increase of 𝑆𝑐𝑜𝑟𝑟 , regardless
of the chosen data generation configuration: 20.92% and 89.53%
improvement from Features-1 to Features-2 for the standard and
the symmetry-breaking configurations, respectively. The constraint
optimizer explicitly uses the Node-ID and Tag-ID to compute the
optimal solution in the symmetry-breaking configuration, which
is why providing the ML model with these features is crucial for
it to be able to learn the structural dependencies in the topologies.
Implementing symmetry-breaking measurements in the data gen-
eration procedure is a critical measure for allowing the ML model
to generate complete schedules (highest increase in 𝑆𝑐𝑜𝑟𝑟 ). Since
we explore a supervised learning approach, it is crucial to constrain
the mapping between inputs and targets for the NN model to learn
consistent graph-related structural dependencies.

5.4.2 Influence of the Number of GNN-Blocks. To analyze the in-
fluence of the required 𝐾-hop neighborhood aggregation of the
GNN model, we analyze the model’s performance as we vary the
number of GNN-Blocks while keeping other architectural compo-
nents constant to the values found by extensive empirical analysis.
Specifically, we set the embedding dimension to 𝐷𝑒 = 48, the num-
ber of attention heads to 𝑀 = 2, and the GNN-Blocks’ hidden
feature dimensions to 𝐷 (𝑖 )

𝐻
= 200. Fig. 7 illustrates how increasing

the number of GNN-Blocks increases the performance of the ML
model: the F1-score increases to a saturation point around 12 layers.
Although the 15-layer model exhibits the highest 𝑆𝑐𝑜𝑟𝑟 , subsequent
experiments showed that this model overfits and hence is unable
to scale to larger problem instances.

Inference Module. Based the findings of this section, Deep-
GANTT’s Inference Module consists of 12 GNN blocks and is
trained on ∼424000 small-sized problem instances (IoT networks of
up to 10 nodes and 14 tags) obtained from the optimal scheduler
as described in Section 5.3. We used an NVIDIA Titan RTX for
131 epochs before reaching the early-stop condition. The model
achieved 99.56% accuracy, a carrier-class F1-score of 98.51%, and a
percentage of correctly computed schedules of 𝑆𝑐𝑜𝑟𝑟 = 99.88%.

6 EVALUATION
After designing and training DeepGANTT’s Inference Module in
Section 5, in this section, we compare DeepGANTT’s results to
those of the TagAlong scheduler [41] and the optimal scheduler. By
design, DeepGANTT can generate schedules for previously unseen
topologies without the need for retraining. Hence, no further ML
model training was performed for the experiments presented in
this section. We highlight the following key findings:

• DeepGANTT performs within 3% of the optimal scheduler
on the average number of carriers used, while consistently
outperforming TagAlong by up to 50%. This directly trans-
lates into energy and spectrum savings for the IoT network.

• Our scheduler scales far beyond the problem sizes where it
was trained, while still outperforming TagAlong; therefore
enabling large resource savings well beyond the limits of the
optimal scheduler.

• We deploy DeepGANTT to compute schedules for a real IoT
network of 24 nodes. Compared to the TagAlong scheduler,

5 8 10 14
Number of tags T

0

1

2

Ca
rri

er
s S

av
ed DeepGANTT

Optimal Scheduler

(a) Average number of carriers saved relative to TagAlong.

5 8 10 14
Number of tags T

0.0

0.5

1.0

Ti
m

es
lo

ts
 S

av
ed DeepGANTT

Optimal Scheduler

(b) Average timeslot savings relative to TagAlong.

Figure 8: DeepGANTT largely mimics the optimal scheduler both in terms of carriers
saved and timeslots saved. Average gain for networks of 10 IoT nodes and various
numbers of tags in the test dataset. The black bars depict the 10 and 90 percentiles.

DeepGANTT reduces the energy per tag interrogation by
13.1% in average and up to 51.6%.

• With polynomial time complexity and a maximum observed
computation time of 1.49 s, DeepGANTT’s speed is compa-
rable to TagAlong’s, and well within the needs of a practical
deployment.

Baselines. To conduct our evaluation, we consider two base-
lines: i) the optimal scheduler, which corresponds to using a con-
straint optimizer for computing the optimal solution including the
symmetry-breaking constraints for topologies of up to 10 nodes and
14 tags, and ii) the TagAlong scheduler, the state-of-the-art heuristic
algorithm for computing interrogation schedules for the type of
backscatter IoT network considered in this work [41].

Evaluation Section Structure. This section is structured as fol-
lows. Sec. 6.1 benchmarks DeepGANTT’s performance against the
optimal scheduler and the TagAlong scheduler for topologies of up
to 10 nodes and 14 tags previously unseen to DeepGANTT (test set).
Sec. 6.2 analyzes DeepGANTT’s gains over TagAlong for topologies
well beyond the practical applicability of the optimal scheduler of
up to 60 nodes and 160 tags (generalization set). Sec. 6.3 describes
DeepGANTT’s time complexity and its computation times. Finally,
Sec. 6.4 demonstrates DeepGANTT’s ability to produce schedules
for a real IoT network of 𝑁 = 24 nodes under different number of
tags configurations.

6.1 Test Set Performance
We hereby demonstrate DeepGANTT’s ability to mimic the be-
haviour of the optimal scheduler to produce interrogation schedules
and exhibit similar gains as the optimal scheduler’s performance
over the TagAlong heuristic.



IPSN ’23, May 9–12, 2023, San Antonio, TX, USA Perez-Ramirez, et al.

10 14 25 50 75
Number of tags T

0

10

20

30
Ca

rri
er

s U
se

d
DeepGANTT
Optimal Scheduler
TagAlong

(a) Average number of carriers used for networks of 10 IoT nodes.

10 20 30 40
Number of nodes N

0

5

10

Av
g.

 C
ar

rie
rs

 
Sa

ve
d 

[%
]

60 tags 80 tags

(b) Average percentage of carriers saved compared to TagAlong.

Figure 9: DeepGANTT scales far beyond the range of data where the optimal schedules
used in training are available, while outperforming TagAlong by a growing margin (9a)
The black bars depict the 10 and 90 percentiles. DeepGANTT also maintains an average
saving of almost 10% in scheduled carriers while scaling up to four times the maximum
training network size (9b).

Test Dataset. We consider topologies consisting of ∼106000
problem instances of up to 10 nodes and 14 tags for which it is still
possible to deploy the optimal scheduler.

Test Metrics. We compare the number of carrier slots in the
generated schedules since it directly affects the IoT network’s over-
all energy consumption. Specifically, for every evaluation problem
instance we compute DeepGANTT’s saved carriers as 𝐶𝑑 −𝐶𝑡 and,
those of the optimal scheduler as𝐶𝑜 −𝐶𝑡 ; where𝐶𝑑 ,𝐶𝑡 , and𝐶𝑜 are
the number of carriers scheduled by the DeepGANTT, TagAlong
and the optimal schedulers respectively. Furthermore, we analyze
the total schedule length, since it directly relates to the latency of
communications in the wireless network. We compute the timeslots
savings in a manner analogous to the carrier savings.

Test Results. Fig. 8a shows the average number of carriers saved
compared to TagAlong (higher is better) for various network sizes
in the test dataset. DeepGANTT’s performance is very close to that
of the optimal scheduler in all cases. The number of timeslots in
the schedule is the secondary objective in the tag scheduling prob-
lem; this is because, while the duration of the schedule can impact
latency and other performance metrics in the network, the number
of carriers directly impacts energy and spectral efficiency. Note that
reducing the number of carrier slots, can potentially also shorten
the schedule owing to carrier reuse [41]. As depicted in Fig. 8b,
DeepGANTT largely mimics the performance of the optimal sched-
uler regarding timeslot savings. Our scheduler outperforms the
TagAlong scheduler in 98.2% of the test-set instances. On those in-
stances where TagAlong schedules are shorter, it is by one timeslot
at most.

6.2 Generalization Performance
We now analyze the capabilities of DeepGANTT in computing
schedules for problem sizes well beyond those observed during

training and compare its performance against the TagAlong sched-
uler. The ability to generalize this way directly translates into better
scalability than that of the optimal scheduler.

Generalization Dataset.We consider 1000 problem instances
for every ⟨𝑁,𝑇 ⟩ pairs from the sets 𝑁 ∈ {10, 20, 30, 40, 60} and
𝑇 ∈ {20, 40, 60, 80, 160}, i.e., 25000 different IoT wireless networks.

Metrics. We consider the same metrics as those used in Sec. 6.1.
Generalization Results. Fig. 9a shows a comparison of the

average number of carriers utilized (lower is better) on problem sizes
beyond those used in training. DeepGANTT outperforms TagAlong
by a growing margin well beyond the maximum size of optimal
solutions seen in training (beyond 10 nodes and 14 tags). Compared
to TagAlong, DeepGANTT is able to reduce the percentage of
necessary carriers ∼ 7%− 10% on average for large numbers of
tags, as depicted in Fig. 9b. Fig. 10 depicts the number of carriers
saved and the percentage of correctly computed schedules 𝑆𝑐𝑜𝑟𝑟 for
different network size configurations. DeepGANTT consistently
increases the mean number of carriers saved as the number of tags
increases for all considered configurations. While there are cases
where TagAlong outperforms DeepGANTT, these are actually rare
occurrences; this is evident by the positive mean and the location
of the 25-percentiles. Additionally, DeepGANTT’s percentage of
correctly-computed schedules (𝑆𝑐𝑜𝑟𝑟 ) decreases for the 10-node 80-
tags case, but remains above 99% for the 40 and 60 nodes problem
instances, for all the number of tags considered. DeepGANTT is
able to reduce the number of carriers by up to 50% for all number
of nodes configurations in Fig. 10.

6.3 Computation Time
A determining factor for the real-world applicability of a scheduler
is the computation time. Fig. 11 depicts a run time comparison of
DeepGANTT and TagAlong on the same hardware. While TagA-
long runs faster, the absolute values are so small that the difference
is negligible in practice. Note that for the largest problem instances
considered (60 nodes and 160 tags), the maximum runtime recorded
was 1.49 s, with an average runtime of 0.25 s. This is in stark con-
trast with the optimal scheduler that takes several hours to compute
schedules for just 10 nodes and 14 tags.

Time Complexity. In general, an attention-based message pass-
ing operation has time complexityO(𝑁+|𝐸 |), where𝑁 is the number
of nodes in the graph and |𝐸 | is the number of edges [49]. In the
worst case, DeepGANTT performs 𝑇 complete ML model passes,
one for every tag in the wireless network. Hence, the complexity
of our algorithm is polynomial in the input size: O(𝑇 (𝑁 +|𝐸 |)).

6.4 Performance on a Real IoT Network
In this sectionwe deploy DeepGANTT to compute tag interrogation
schedules for a real IoT network and compare its performance with
that of the TagAlong scheduler. We show that DeepGANTT can
achieve up to 51.6% energy savings in tag interrogation.

Setup. We use an indoor IoT testbed consisting of 24 Zolertia
Firefly devices (see Fig. 12a). The devices run the Contiki-NG op-
erating system [38], communicate using IPv6 over IEEE 802.15.4
Time-Slotted Channel Hopping (TSCH) [7], and use RPL as routing
protocol [54]. We collect the link connectivity among the IoT nodes



DeepGANTT: A Scalable Deep Learning Scheduler for Backscatter Networks IPSN ’23, May 9–12, 2023, San Antonio, TX, USA

0
50

100

S c
or
r [

%
]

20 40 60 80 160
Number of tags T

−10

0

10

20

Ca
rri

er
s S

av
ed

(a) 10-node topologies.

0
50

100

S c
or
r [

%
]

20 40 60 80 160
Number of tags T

−10

−5

0

5

10

15

20

Ca
rri

er
s S

av
ed

(b) 20-node topologies.

0
50

100

S c
or
r [

%
]

20 40 60 80 160
Number of tags T

−10

−5

0

5

10

15

Ca
rri

er
s S

av
ed

(c) 40-node topologies.

0
50

100

S c
or
r [

%
]

20 40 60 80 160
Number of tags T

−10

−5

0

5

10

Ca
rri

er
s S

av
ed

(d) 60-node topologies.

Figure 10: DeepGANTT outperforms TagAlong even when increasing the topology sizes far beyond those seen on training. Scaling capabilities of DeepGANTT when compared to the
TagAlong heuristic in terms of carrier savings. The model achieves a maximum carrier reduction of up to 43.42%, 43.86%, 33.93%, 32.14% for 160 tags and 10, 20, 40, and 60 nodes,
respectively. The blue and the orange line represent the mean and the median, respectively. Box extents delimit 25 and 75 percentiles. Whiskers delimit 1 and 99 percentiles. The
model also has a high success rate (𝑆𝑐𝑜𝑟𝑟 ), especially for larger topologies.

20 40 60 80 160
Number of tags T

0

500

Co
m

pu
ta

ta
io

n 
Ti

m
e 

[m
s]

DeepGANTT
TagAlong

(a) Average runtimes for 10 nodes.

20 40 60 80 160
Number of tags T

0

500

Co
m

pu
ta

ta
io

n 
Ti

m
e 

[m
s]

DeepGANTT
TagAlong

(b) Average runtimes for 60 nodes.

Figure 11:While TagAlong runs faster than DeepGANTT, both run times are so small
that the difference is negligible. Run time comparison of DeepGANTT and TagAlong
for 10 and 60 IoT nodes with various numbers of tags. The black bars represent the
standard deviation.

every 30min over a period of four days.We assume there is a link be-
tween any given pair of nodes if there is a signal strength of at least
−75 dBm for carrier provisioning. The IoT network exhibits a dy-
namic change of node connectivity over the observed period of time
(see Fig. 12b). We augment each of the collected network topologies
with randomly assigned tags in the range 𝑇 ∈ {10, 25, 50, 75, 85},
100 assignments per 𝑇 value.

Metrics.Apart from the carriers savedmetric employed in Sec. 6.1
and 6.2, we also include the average energy per tag interrogation 𝐸,
which is the total energy for tag interrogations 𝐸𝑡𝑜𝑡 divided by the

number of tags in the network. Based on Fig. 4a, 𝐸 is given by:

𝐸 =
𝐸𝑡𝑜𝑡

𝑇
= 𝑃𝑡𝑥 𝑡𝑡𝑥 +𝑃𝑟𝑥

(
𝐶

𝑇
𝑡𝑟𝑒𝑞+𝑡𝑟𝑥

)
+𝑃𝑡𝑥

(
𝑡𝑟𝑒𝑞+

𝐶

𝑇
𝑡𝑐𝑔

)
, (18)

where 𝐶 is the number of carriers used in the schedule, 𝑇 is the
number of tags in the network, and both 𝑃𝑟𝑥 and 𝑃𝑟𝑥 correspond
to the radio power at transmit and receive mode, respectively. We
adopt 𝑃𝑟𝑥 = 72𝑚𝑊 , 𝑃𝑡𝑥 = 102𝑚𝑊 based on the Firefly’s reference
values. Moreover, we assume 𝑡𝑟𝑒𝑞 = 𝑡𝑡𝑥 = 128𝜇𝑠 , 𝑡𝑟𝑥 = 256𝜇𝑠 , and
𝑡𝑐𝑔 = 15.75𝑚𝑠 [41].

Results. Fig. 13 summarizes the results of deploying Deep-
GANTT to compute schedules on the real IoT network topologies
compared to the TagAlong scheduler for different tag densities 𝑇

𝑁
.

DeepGANTT shows a similar behaviour of carriers saved in Fig. 13a
to those seen in Fig. 10. Moreover, our scheduler achieves average
savings in 𝐸 compared to TagAlong above 10.96% for 𝑇

𝑁
≥ 2.17,

with up to 51.64% maximum energy savings. Finally, Fig. 13b ex-
hibits runtimes similar to those observed in Fig. 11.

7 DISCUSSION
DeepGANTT is the first DL-based scheduler trained on optimal
solutions which employs GNNs to generate interrogation schedules
for tag-augmented IoT networks. Without the need for retraining,
our scheduler can generate schedules for previously unseen and sig-
nificantly larger topologies than those seen during training, while
still achieving significant gains over the state-of-the-art heuris-
tic. This section discusses practical implications and limitations of
deploying DeepGANTT in real-world settings.

7.1 Practical Implications
Symmetry-Breaking. Our symmetry-breaking approach for gen-
erating the training data introduces bias in the scheduler: nodes
with lower IDs would deplete their batteries faster, given that they
will be selected more often as carrier generators. Far from a draw-
back, we believe this can be exploited as a feature at the applica-
tion level. For instance, one could load-balance carrier scheduling



IPSN ’23, May 9–12, 2023, San Antonio, TX, USA Perez-Ramirez, et al.

13

2322212018

19

17
16

1514

11
9

8 10

12

7

1 2
3

4 6 5

24

(a) 24 node IoT testbed layout.

Mon 12:00
Tue 00:00

Tue 12:00
Wed 00:00

Wed 12:00
Thu 00:00

Thu 12:00
Fri 00:00

0

5

10

15

20

25

Re
la

tiv
e 

Ch
an

ge
 in

 
Nu

m
. o

f E
dg

es
 [%

]

(b) Link connectivity change over time.

Figure 12:We implement DeepGANTT to compute schedules for a real IoT network. The
network exhibits a high rate of change in its connectivity between two subsequent
link collection time periods. The orange dashed line in 12b shows an average of 10.4%.

0.43 1.09 2.17 3.26 3.7
Tag Density T/N

0

5

10

15

Ca
rri

er
s s

av
ed

(a) Carriers saved compared to
TagAlong heuristic.

500 1000 1500
Compute Time [ms]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

CD
F

(b) DeepGANTT’s runtime across
all tag densities.

0.43 1.09 2.17 3.26 3.7
Tag Density T/N

−200

0

200

400

En
er

gy
 p

er
 T

ag
 sa

ve
d 

[m
J]

0.43 1.09 2.17 3.26 3.7
Tag Density T/N

−40

−20

0

20

40

En
er

gy
 p

er
 T

ag
 sa

ve
d 

[%
]

(c) Compared to TagAlong, DeepGANTT reduces per-tag energy consumption
by 13% in average and up to 51% for high tag densities.

Figure 13: DeepGANTT achieves high energy savings compared to TagAlong, even for
high tag densities.We successfully deployed DeepGANTT to generate schedules for
a real IoT network of 𝑁 =24 nodes and varying number of tags𝑇 . The blue and the
orange line represent the mean and the median, respectively. Box extents delimit 25
and 75 percentiles. Whiskers delimit 5 and 99 percentiles.

over time by re-shuffling the node-IDs before each inference step,
or schedule mains-powered carrier generators whenever possible
instead of battery-powered ones simply by ordering the IDs in
descending order of priority. Furthermore, the lexicographical mini-
mization constraint is beneficial when the tags must be interrogated
in a certain order, since our approach favors interrogating tags with
lower IDs in the network early in the schedule.

Infrastructure Requirements. DeepGANTT is intended to
run at an Edge/Cloud server to process requests from different
IoT networks. While this induces a degree of centralization in the
sense that the schedule is computed at one place, this is also true
for the TagAlong heuristic [41], as both systems are equal in that
regard. For DeepGANTT, this is motivated by the fact that it greatly
benefits from hardware accelerators, such as a GPU. In such a case,
it exhibits short runtimes as presented in Figures 11 and 13b.

Tracking Topology Changes. In our specific implementation,
we leverage TSCH [7] and RPL [54] to gather the link state and
node neighborhood information to build the topology graph and
track changes thereof. In general, other alternatives for physical
layer and routing protocols can be used for these purposes.

Schedule Dissemination.While there is certain communica-
tion overhead when disseminating the computed schedule for Deep-
GANTT, this is also true for the TagAlong heuristic, as both employ
the same dissemination mechanisms. This overhead is proportional
to the length of the schedule. As shown in Figure 8b, DeepGANTT
produces in average shorter schedules than the heuristic, which
implies a lower schedule dissemination overhead. Additionally, our
system design does not restrict the IoT network from leveraging
existing network flooding mechanisms, such as Trickle [29] or
Glossy [10], as alternatives for disseminating the schedule.

7.2 Limitations and Future Work
Relative Tag-to-Host Location. Our system model assumes that
tags are located in close proximity to their respective host, which
allows us to leverage efficient carrier re-use as presented in Figure 3
and 4b. This is, is in general, a limitation of our system. How-
ever, this fits well with the envisioned scenario where the sensing
capabilities of an unmodified network of COTS IoT devices are
augmented with backscatter tags in a simple and scalable manner.
While there are ways in which we may generalize the system to
relax this assumption, this is beyond the scope of this work.

High-Mobility Scenarios.Whilewe did not designDeepGANTT
for highly mobile scenarios, the short runtimes of our scheduler
allows it to operate in a timely manner and react fast to changes
in the IoT network. Further work could evaluate deploying Deep-
GANTT for highly-mobile scenarios, and, if necessary, improve it
to operate in such settings.

Tag Discovery Process. In our implementation, an IoT node
does not automatically detect when a tag is added to, or removed
from, its proximity. Rather, this must be explicitly notified to the
IoT network. This is a general problem in the type of backscatter
networks considered in this work, and out of the scope of this paper.



DeepGANTT: A Scalable Deep Learning Scheduler for Backscatter Networks IPSN ’23, May 9–12, 2023, San Antonio, TX, USA

8 RELATEDWORK
Our work is relevant both for scheduling in backscatter networks
and for supervised ML applied to communications; in particular,
to problems of a combinatorial nature. Many recent related ef-
forts advance backscatter communications and battery-free net-
works [9, 12, 22, 24–26, 33, 37, 46, 60], but few of these address the
efficient provision of unmodulated carriers. Pérez-Penichet et al.
demonstrate TagAlong, a complete system with a polynomial-time
heuristic to compute interrogation schedules for backscatter de-
vices [41, 43]. Like our work, TagAlong exploits knowledge of the
structural properties of the wireless network for fast scheduling.
However, TagAlong’s carefully designed algorithm produces waste-
ful suboptimal schedules. Van Huynh et al. [20] employ numerical
analysis to optimize RF energy harvesting tags. By contrast, our
work focuses on communication aspects and remains independent
of the energy harvesting modality. Carrier scheduling resembles
the Reader Collision Problem in RFID systems [17, 56, 58] in that
both need to avoid carrier collisions. These works focus on the
monostatic backscatter configuration (co-located carrier generator
and receiver), whereas our work focuses on the bi-static configu-
ration (separated carrier generators and receivers). The bi-static
setting leads to a different optimization problem and our focus
is on resource optimization rather than mere collision avoidance.
Previous efforts in communications employ reinforcement learning
with GNNs to solve combinatorial scheduling problems, mostly on
fixed-size networks or static environments [2, 52, 59]. By contrast,
our work focuses on a single solution tackling variable-size inputs
and outputs, adequate for a multitude of varying conditions. Also
novel in our work is that we employ supervised ML to solve the
COP; to the best of our knowledge, this is a new approach within
backscatter communications. Yet another novelty in our work is
our strategy of restricting the solution space of the COP to boost
the trained model’s performance and scalability properties.

ML methods have been applied to COPs over graphs in the past
years [50], for both reinforcement [5, 34] and supervised learn-
ing [30, 51]. Similar to our work, Vinyals et al. [51] implement
an attention-based sequence-to-sequence model that learns from
optimal solutions to solve the traveling salesperson problem. Like-
wise, Li et al. [30] employ GNNs [6, 28] to solve three traditional
COPs with a supervised approach. Finally, we believe that our
approach for dealing with multiple solutions in the scheduling
problem could have far-reaching implications in solving the broad
class of graph-related NP-hard COPs (such as traveling salesperson)
using supervised ML techniques.

9 CONCLUSION
DeepGANTT generates interrogation schedules for a network of
IoT devices interoperating with battery-free backscatter tags. Our
scheduler leverages self-attention GNNs to overcome the challenges
posed by the graph representing the problem and by the variable-
sized inputs and outputs. Our symmetry-breaking strategy succeeds
in training DeepGANTT to mimic the behavior of an optimal sched-
uler on small-sized network topologies. Without the need to be
re-trained, our scheduler exhibits strong generalization capabili-
ties to previously unseen problem instances up to six times larger
than those used for training. DeepGANTT computes schedules

that require on average 7%−10% and up to 50% fewer carriers than
those produced by an existing, carefully crafted heuristic, even for
the largest problem instances considered. More importantly, our
scheduler performs within 3% of the optimal on the average num-
ber of carrier slots but with polynomial time complexity; lowering
computation times from hours to fractions of a second. Our work
advances the development of practical and more efficient backscat-
ter networks. This, in turn, paves the way for wider employment
in a large range of environments that today pose problems of great
difficulty and importance.

ACKNOWLEDGMENTS
This work was financially supported by the Swedish Foundation
for Strategic Research (SSF), by the European Union’s Horizon 2020
AI@EDGE project (Grant 101015922), and by the Swedish Research
Council (Grant 2017-045989). Nicolas Tsiftes was partially funded
by KTH Digital Futures. The authors would also like to thank Erik
Ylipää from RISE for early discussions about this work.

REFERENCES
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-

tion. In Proc. Advances in Neural Information Processing Systems (NIPS) 2016 Deep
Learn. Symp. NIPS. arXiv:1607.06450

[2] Rajarshi Bhattacharyya, Archana Bura, Desik Rengarajan, Mason Rumuly, Srini-
vas Shakkottai, Dileep Kalathil, Ricky K. P. Mok, and Amogh Dhamdhere. 2019.
QFlow: A Reinforcement Learning Approach to High QoE Video Streaming over
Wireless Networks. Proc Int. Symp. Mobile Ad Hoc Netw. Comput. (MobiHoc),
251–260. arXiv:1901.00959

[3] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and
machine learning. Springer.

[4] Bluetooth SIG. 2021. Bluetooth Core Specification 5.3.
[5] Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017.

Learning Combinatorial Optimization Algorithms over Graphs. In Proc. Advances
Neural Inf. Process. Syst. (NIPS), Vol. 2017-Decem. Neural information processing
systems foundation, 6349–6359. arXiv:1704.01665

[6] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering.
In Proc. Advances in Neural Inf. Process. Syst. (NeurIPS). NeurIPS, 3844–3852.
arXiv:1606.09375

[7] Simon Duquennoy, Atis Elsts, Beshr Al Nahas, and George Oikonomou. 2017.
TSCH and 6TiSCH for Contiki: Challenges, Design and Evaluation. In 2017 13th
International Conference on Distributed Computing in Sensor Systems (DCOSS).
11–18. https://doi.org/10.1109/DCOSS.2017.29

[8] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. 2020. Benchmarking Graph Neural Networks. Technical Report.
arXiv:2003.00982

[9] Joshua Ensworth andMatthew S. Reynolds. 2015. Every smart phone is a backscat-
ter reader: Modulated backscatter compatibility with Bluetooth 4.0 Low Energy
(BLE) devices. In Proc. Ann. Conf. RFID. IEEE.

[10] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. 2011. Ef-
ficient network flooding and time synchronization with Glossy. In Proc. 10th
ACM/IEEE Int. Conf. Information Processing in Sensor Networks. 73–84.

[11] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. In Proc. ICLR Workshop Representation Learn. Graphs
Manifolds.

[12] Kai Geissdoerfer and Marco Zimmerling. 2021. Bootstrapping Battery-free Wire-
less Networks: Efficient Neighbor Discovery and Synchronization in the Face of
Intermittency. In (NSDI’21). 439–455.

[13] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. Proc. 34th Int. Conf.
Mach. Learn. (ICML) 3 (apr 2017), 2053–2070. arXiv:1704.01212

[14] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network
Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th
Python in Science Conference, Gaël Varoquaux, Travis Vaught, and Jarrod Millman
(Eds.). Pasadena, CA USA, 11 – 15.

[15] William L Hamilton. 2020. Graph representation learning. Vol. 14. Morgan &
Claypool Publishers.

[16] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proc. Advances Neural Inf. Process. Syst. (NIPS),
Vol. 2017-Decem. Neural information processing systems foundation, 1025–1035.

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1901.00959
https://arxiv.org/abs/1704.01665
https://arxiv.org/abs/1606.09375
https://doi.org/10.1109/DCOSS.2017.29
https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/1704.01212


IPSN ’23, May 9–12, 2023, San Antonio, TX, USA Perez-Ramirez, et al.

[17] Essia Hamouda, Nathalie Mitton, and David Simplot-Ryl. 2011. Reader Anti-
collision in dense RFID networks with mobile tags. In 2011 IEEE International
Conference on RFID-Technologies and Applications. 327–334. https://doi.org/10.
1109/RFID-TA.2011.6068657

[18] Mehrdad Hessar, Ali Najafi, and Shyamnath Gollakota. 2018. NetScatter: Enabling
Large-Scale Backscatter Networks. In NSDI’18. USENIX.

[19] Josiah Hester and Jacob Sorber. 2017. The Future of Sensing is Batteryless,
Intermittent, and Awesome. In Proc. 15th ACM Conf. on Embedded Netw. Sensor
Syst. (Delft, Netherlands) (SenSys ’17). Association for Computing Machinery,
New York, NY, USA, Article 21, 6 pages. https://doi.org/10.1145/3131672.3131699

[20] Nguye Van Huynh, Dinh Thai Hoang, Dusit Niyato, Ping Wang, and Dong In
Kim. 2018. Optimal Time Scheduling for Wireless-Powered Backscatter Commu-
nication Networks. IEEE Wireless Commun. Lett. 7 (2018), 820–823.

[21] IEEE. 2016. IEEE Standard for Low-Rate Wireless Networks –Amendment 2: Ultra-
Low Power Physical Layer.

[22] Vikram Iyer et al. 2016. Inter-Technology Backscatter: Towards Internet Connec-
tivity for Implanted Devices. ACM, 356–369. https://doi.org/10.1145/2934872.
2934894

[23] Furqan Jameel, Ruifeng Duan, Zheng Chang, Aleksi Liljemark, Tapani Ristaniemi,
and Riku Jantti. 2019. Applications of backscatter communications for healthcare
networks. IEEE Network 33, 6 (2019), 50–57.

[24] Y. Karimi, A. Athalye, S. R. Das, P. M. Djurić, and M. Stanaćević. 2017. Design of
a backscatter-based Tag-to-Tag system. In 2017 IEEE International Conference on
RFID (IEEE RFID). 6–12. https://doi.org/10.1109/RFID.2017.7945579

[25] Bryce Kellogg et al. 2014. Wi-Fi Backscatter: Internet Connectivity for RF-
powered Devices. In Proc. Special Interest Group Data Commun. (SIGCOMM).
ACM, New York, NY, USA, 607–618. https://doi.org/10.1145/2619239.2626319

[26] Bryce Kellogg et al. 2016. Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmis-
sions. In Proc. Symp. Networked Syst. Des. Implementation (NSDI). NSDI, 151–164.

[27] Diederik P Kingma and Jimmy Lei Ba. 2015. Adam: A Method For Stochastic
Optimization. In Proc. Int. Conf. Learn. Representations (ICLR). arXiv:1412.6980v9

[28] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proc. 5th Int. Conf. Learn. Representations
(ICLR). ICLR. arXiv:1609.02907

[29] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko. 2011. The Trickle Algorithm.
Retrieved Feb. 2023 from https://www.rfc-editor.org/rfc/rfc6206

[30] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. 2018. Combinatorial optimization
with graph convolutional networks and guided tree search. In Proc. Advances in
Neural Inf. Process. Syst. (NeurIPS). 539–548.

[31] Vincent Liu et al. 2013. Ambient Backscatter: Wireless Communication out of
Thin Air. In Proc. Special Interest Group Data Commun. (SIGCOMM). ACM, 39–50.
https://doi.org/10.1145/2486001.2486015

[32] Jerry Ma and Denis Yarats. 2021. On the adequacy of untuned warmup for
adaptive optimization. In Proc. of the AAAI Conf. Artificial Intelligence, Vol. 35.
8828–8836.

[33] A. Y. Majid, M. Jansen, G. O. Delgado, K. S. Yildirim, and P. Pawełłzak. 2019.
Multi-hop Backscatter Tag-to-Tag Networks. In Proc. Int. Conf. Comput. Commun.
(INFOCOM). IEEE, 721–729. https://doi.org/10.1109/INFOCOM.2019.8737551

[34] Sahil Manchanda, Akash Mittal, Anuj Dhawan, Sourav Medya, Sayan Ranu,
and Ambuj Singh. 2020. Learning Heuristics over Large Graphs via Deep
Reinforcement Learning. In Proc. 34th Conf. Neural Inf. Process. Syst. (NIPS).
arXiv:1903.03332

[35] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
[36] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.

Duck, and Guido Tack. 2007. MiniZinc: Towards a standard CP modelling lan-
guage. In Lecture Notes in Computer Science, Vol. 4741 LNCS. Springer Verlag,
529–543. https://doi.org/10.1007/978-3-540-74970-7_38

[37] P. V. Nikitin, S. Ramamurthy, R. Martinez, and K. V. S. Rao. 2012. Passive tag-
to-tag communication. In Proc. Int. Conf. RFID (RFID). IEEE, 177–184. https:
//doi.org/10.1109/RFID.2012.6193048

[38] George Oikonomou, Simon Duquennoy, Atis Elsts, Joakim Eriksson, Yasuyuki
Tanaka, and Nicolas Tsiftes. 2022. The Contiki-NG open source operating system
for next generation IoT devices. SoftwareX 18 (2022), 101089. https://doi.org/10.
1016/j.softx.2022.101089

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, and et al. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Proc. Advances Neural Inf. Process. Syst., H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran
Associates, Inc., 8024–8035.

[40] Carlos Pérez-Penichet, Frederik Hermans, Ambuj Varshney, and Thiemo Voigt.
2016. Augmenting IoT networks with backscatter-enabled passive sensor tags.
In Proc. Annu. Int. Conf. Mobile Comput. Netw. (MOBICOM). ACM, 23–27. https:
//doi.org/10.1145/2980115.2980132

[41] Carlos Pérez-Penichet, Dilushi Piumwardane, Christian Rohner, and Thiemo
Voigt. 2020. A Fast Carrier Scheduling Algorithm for Battery-free Sensor Tags in
Commodity Wireless Networks. In Proc. Int. Conf. Comput. Commun. (INFOCOM).
IEEE, 994–1003. https://doi.org/10.1109/infocom41043.2020.9155241

[42] Laurent Perron and Vincent Furnon. 2019. OR-Tools. https://developers.google.
com/optimization/

[43] Carlos Pérez-Penichet, Dilushi Piumwardane, Christian Rohner, and Thiemo
Voigt. 2020. TagAlong: Efficient Integration of Battery-Free Sensor Tags in
Standard Wireless Networks. In Proc. 19th ACM/IEEE Int. Conf. Inf. Process. Sensor
Netw. (IPSN). Sydney, Australia. https://doi.org/10.1109/IPSN48710.2020.00020

[44] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2009. The graph neural network model. IEEE Trans. Neural Netw. 20,
1 (jan 2009), 61–80. https://doi.org/10.1109/TNN.2008.2005605

[45] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and
Yu Sun. 2021. Masked Label Prediction: Unified Message Passing Model for Semi-
Supervised Classification. Technical Report. arXiv:2009.03509v5

[46] Vamsi Talla, Mehrdad Hessar, Bryce Kellogg, Ali Najafi, Joshua R. Smith, and
Shyamnath Gollakota. 2017. LoRa Backscatter: Enabling The Vision of Ubiquitous
Connectivity. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 3, 105:1–
105:24. https://doi.org/10.1145/3130970

[47] Ambuj Varshney, Carlos Pérez-Penichet, Christian Rohner, and Thiemo Voigt.
2017. LoRea: A Backscatter Architecture That Achieves a Long Communication
Range. In Proc. 15th ACM Conf. Embedded Netw. Sensor Syst. (Netherlands) (SenSys
’17). Association for Computing Machinery, New York, NY, USA, Article 50,
2 pages. https://doi.org/10.1145/3131672.3136996

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. Advances Neural Inf. Process. Syst. (NIPS), Vol. 2017-Decem.
NIPS, 5999–6009.

[49] Petar Veličković, Arantxa Casanova, Pietro Liò, Guillem Cucurull, Adriana
Romero, and Yoshua Bengio. 2018. Graph attention networks. In Proc. 6th Int.
Conf. Learn. Representations (ICLR). ICLR. arXiv:1710.10903

[50] Natalia Vesselinova, Rebecca Steinert, Daniel F Perez-Ramirez, and Magnus
Boman. 2020. Learning combinatorial optimization on graphs: A survey with
applications to networking. IEEE Access 8 (2020), 120388–120416.

[51] Oriol Vinyals, Google Brain, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer
Networks. In Proc. Advances Neural Inf. Process. Syst. (NIPS). 2692–2700.

[52] Fangxin Wang, Cong Zhang, Feng Wang, Jiangchuan Liu, Yifei Zhu, Haitian
Pang, and Lifeng Sun. 2019. Intelligent Edge-Assisted Crowdcast with Deep
Reinforcement Learning for Personalized QoE. In Proc. IEEE Int. Conf. Comput.
Commun. (INFOCOM), Vol. 2019-April. IEEE, 910–918. https://doi.org/10.1109/
INFOCOM.2019.8737456

[53] Anran Wang et al. 2017. FM Backscatter: Enabling Connected Cities and Smart
Fabrics.. In NSDI’17. USENIX, 243–258.

[54] T. Winter. 2012. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks.
Retrieved Oct. 2022 from https://www.rfc-editor.org/rfc/rfc6550

[55] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Trans. Neural Netw. 32, 1 (2021), 4–24. https://doi.org/10.1109/TNNLS.2020.
2978386

[56] L. Yang, J. Han, Y. Qi, C. Wang, T. Gu, and Y. Liu. 2011. Season: Shelving interfer-
ence and joint identification in large-scale RFID systems. In Proc. Int. Conf. Com-
put. Commun. (INFOCOM). IEEE, 3092–3100. https://doi.org/10.1109/INFCOM.
2011.5935154

[57] Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware Graph Neural
Networks. In Proc. 36th Int. Conf. Mach. Learn. (ICML). arXiv:1906.04817v2

[58] H. Yue, C. Zhang, M. Pan, Y. Fang, and S. Chen. 2012. A time-efficient information
collection protocol for large-scale RFID systems. In Proc. Int. Conf. Comput.
Commun. (INFOCOM). IEEE, 2158–2166. https://doi.org/10.1109/INFCOM.2012.
6195599

[59] Han Zhang, Wenzhong Li, Shaohua Gao, Xiaoliang Wang, and Baoliu Ye. 2019.
ReLeS: A Neural Adaptive Multipath Scheduler based on Deep Reinforcement
Learning. In Proc. Int. Conf. Comput. Commun. (INFOCOM), Vol. 2019-April. IEEE,
1648–1656. https://doi.org/10.1109/INFOCOM.2019.8737649

[60] Pengyu Zhang, Colleen Josephson, Dinesh Bharadia, and Sachin Katti. 2017.
FreeRider: Backscatter Communication Using Commodity Radios (CoNEXT ’17).
ACM, Incheon, Republic of Korea, 389–401. https://doi.org/10.1145/3143361.
3143374

https://doi.org/10.1109/RFID-TA.2011.6068657
https://doi.org/10.1109/RFID-TA.2011.6068657
https://doi.org/10.1145/3131672.3131699
https://doi.org/10.1145/2934872.2934894
https://doi.org/10.1145/2934872.2934894
https://doi.org/10.1109/RFID.2017.7945579
https://doi.org/10.1145/2619239.2626319
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1609.02907
https://www.rfc-editor.org/rfc/rfc6206
https://doi.org/10.1145/2486001.2486015
https://doi.org/10.1109/INFOCOM.2019.8737551
https://arxiv.org/abs/1903.03332
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1109/RFID.2012.6193048
https://doi.org/10.1109/RFID.2012.6193048
https://doi.org/10.1016/j.softx.2022.101089
https://doi.org/10.1016/j.softx.2022.101089
https://doi.org/10.1145/2980115.2980132
https://doi.org/10.1145/2980115.2980132
https://doi.org/10.1109/infocom41043.2020.9155241
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.1109/IPSN48710.2020.00020
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/2009.03509v5
https://doi.org/10.1145/3130970
https://doi.org/10.1145/3131672.3136996
https://arxiv.org/abs/1710.10903
https://doi.org/10.1109/INFOCOM.2019.8737456
https://doi.org/10.1109/INFOCOM.2019.8737456
https://www.rfc-editor.org/rfc/rfc6550
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/INFCOM.2011.5935154
https://doi.org/10.1109/INFCOM.2011.5935154
https://arxiv.org/abs/1906.04817v2
https://doi.org/10.1109/INFCOM.2012.6195599
https://doi.org/10.1109/INFCOM.2012.6195599
https://doi.org/10.1109/INFOCOM.2019.8737649
https://doi.org/10.1145/3143361.3143374
https://doi.org/10.1145/3143361.3143374

	Abstract
	1 Introduction
	2 background
	2.1 Backscatter Communications
	2.2 Graph Neural Networks

	3 Problem Formulation
	4 System Design
	4.1 Design Considerations
	4.2 System Architecture
	4.3 Input Node Features
	4.4 Inference Module

	5 Learning to Schedule
	5.1 Training Data Generation
	5.2 ML Model Validation Setup
	5.3 ML Model Training
	5.4 Validation Results

	6 Evaluation
	6.1 Test Set Performance
	6.2 Generalization Performance
	6.3 Computation Time
	6.4 Performance on a Real IoT Network

	7 Discussion
	7.1 Practical Implications
	7.2 Limitations and Future Work

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

