
3

High-Bandwidth Data Dissemination
for Large-Scale Distributed Systems

DEJAN KOSTIĆ

Ecole Polytechnique Fédérale de Lausanne

ALEX C. SNOEREN, AMIN VAHDAT, RYAN BRAUD, CHARLES KILLIAN,
and JAMES W. ANDERSON

University of California, San Diego

JEANNIE ALBRECHT

Williams College

and

ADOLFO RODRIGUEZ and ERIK VANDEKIEFT

IBM

This article focuses on the multireceiver data dissemination problem. Initially, IP multicast formed

the basis for efficiently supporting such distribution. More recently, overlay networks have emerged

to support point-to-multipoint communication. Both techniques focus on constructing trees rooted

at the source to distribute content among all interested receivers. We argue, however, that trees

have two fundamental limitations for data dissemination. First, since all data comes from a single

parent, participants must often continuously probe in search of a parent with an acceptable level

of bandwidth. Second, due to packet losses and failures, available bandwidth is monotonically

decreasing down the tree.

To address these limitations, we present Bullet, a data dissemination mesh that takes advantage

of the computational and storage capabilities of end hosts to create a distribution structure where a

node receives data in parallel from multiple peers. For the mesh to deliver improved bandwidth and

reliability, we need to solve several key problems: (i) disseminating disjoint data over the mesh, (ii)

locating missing content, (iii) finding who to peer with (peering strategy), (iv) retrieving data at the

Authors’ current addresses: D. Kostić, Ecole Polytechnique Fédérale de Lausanne (EPFL),

School of Computer & Communication Sciences, Station 14, CH-1015 Lausanne, Switzerland;

email: Dejan.Kostic@epfl.ch; A. C. Snoeren, A. Vahdat, R. Braud, C. Killian, and J. W.

Anderson, Department of Computer Science and Engineering, University of California, San

Diego, 9500 Gilman Drive, M/C 0404, La Jolla, CA 92093; email: {snoeren,vahdat,rbraud,
ckillian,jwanderson}@cs.ucsd.edu; J. Albrecht, Department of Computer Science, Williams

College, 47 Lab Campus Dr., Williamstown, MA 01267; email: jeannie@cs.williams.edu;

A. Rodriguez, WebSphere Technology Institute, IBM, Research Triangle Park, North Carolina

27709; email: adolfo@us.ibm.com; E. Vandekieft, NEC, 10850 Gold Center Dr., Ste. 200, Rancho

Cordova, CA 95670; email: erik.vandekieft@necam.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0734-2071/2008/02-ART3 $5.00 DOI 10.1145/1328671.1328674 http://doi.acm.org/

10.1145/1328671.1328674

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:2 • D. Kostić et al.

right rate from all peers (flow control), and (v) recovering from failures and adapting to dynamically

changing network conditions. Additionally, the system should be self-adjusting and should have few

user-adjustable parameter settings. We describe our approach to addressing all of these problems

in a working, deployed system across the Internet. Bullet outperforms state-of-the-art systems,

including BitTorrent, by 25-70% and exhibits strong performance and reliability in a range of

deployment settings. In addition, we find that, relative to tree-based solutions, Bullet reduces the

need to perform expensive bandwidth probing.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed

Systems; H.4.3 [Information Systems Applications]: Communications Applications

General Terms: Experimentation, Management, Performance

Additional Key Words and Phrases: Bandwidth, overlays, peer-to-peer

ACM Reference Format:
Kostić, D., Snoeren, A. C., Vahdat, A., Braud, R., Killian, C., Anderson, J. W., Albrecht, J.,

Rodriguez, A., and Vandekieft, E. 2008. High-bandwidth data dissemination for large-scale dis-

tributed systems. ACM Trans. Comput. Syst. 26, 1, Article 3 (February 2008), 61 pages. DOI =
10.1145/1328671.1328674 http://doi.acm.org/10.1145/1328671.1328674

1. INTRODUCTION

Single-source high-bandwidth data dissemination is fundamental to a wide
range of distributed applications. Here, some large content (e.g., a file) pro-
duced at a central location needs to be quickly and efficiently transmitted to a
set of interested users spread across a wide-area network. Streaming is a re-
lated and emerging application area. Streaming is similar to file distribution,
except that the source produces new content at a fixed rate and the system par-
ticipants are “playing the stream” while receiving the content. Here, the goal is
to deliver content to all receivers at a relatively steady rate as measured over
relatively small time scales. To demonstrate the importance of high-bandwidth
data dissemination, we describe how this model benefits four important dis-
tributed applications.

—Software and virus signature updates. Recently, it has become crucial to dis-
seminate security-related software updates as quickly as possible to hun-
dreds of millions of end hosts to prevent malicious users from gaining access
to PCs. Software vendors face significant problems while attempting to meet
this goal. For example, the security-laden Microsoft Windows XP Service
Pack 2 size is 260 MB in its full form, and it took more than 2 months to dis-
tribute it to approximately 90 million users [InformationWeek 2004]. During
that time, the users’ machines remained exposed to malicious attacks, despite
the fact that fixes had already been developed. Moreover, these downloads
accounted for only less than half of the total 200 million users, leaving the
remainder vulnerable. While not all of the delay can be attributed to per-
formance limitations, certainly quickly and reliably distributing hundreds of
megabytes to 100 million users is a challenging task. By timely disseminat-
ing security updates, we can thwart data loss, identity theft, and potential
DDoS attacks that cause millions of dollars in damage.

—Video distribution and multimedia streaming. Today’s end-user PCs come
with powerful CPUs, large disks, and broadband Internet connections. These
factors have enabled new multimedia applications, such as movie downloads,

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:3

real-time streaming, and video-on-demand. Multimedia traffic has recently
surpassed Web traffic [Saroiu et al. 2002], and there are often flash crowds for
new content when it appears [Padmanabhan et al. 2003b]. As a result, media
servers often become overloaded during popular events and deny service to
a large fraction of potential viewers.

—Content distribution within a CDN. Content distribution networks (CDNs)
appeared as a response to performance and reliability issues with Web con-
tent delivery. CDNs deploy large numbers of topologically dispersed ma-
chines. However, CDNs do not solve all Internet content delivery problems.
For example, when the CDN server does not have the requested object cached,
it must fetch it from the CDN customer’s Web site. This model is problematic
because simultaneous requests from CDN servers can overwhelm the origin
Web server. Using an efficient data distribution mechanism among the CDN
servers will not overwhelm the origin server and will make the new content
available more efficiently to end users.

—Running jobs on planetary testbeds. Experiments on planetary scale testbeds,
such as PlanetLab and the Grid, cannot run until the executable and the asso-
ciated data sets are copied to potentially hundreds or thousands of machines.
Since these environments often do not offer a high-performance globally vis-
ible data repository, users currently resort to ad hoc file distribution tech-
niques that can overwhelm individual servers. Experimentation with a new
distributed system often requires several tens of runs to debug the software.
Setting up the required experimental infrastructure and copying the exe-
cutable as quickly as possible each time increases productivity and reduces
the overall time to develop a new distributed system or complete a scientific
computation.

There are a number of requirements for any system aiming to realize this
vision of an efficient and reliable content distribution infrastructure. First, since
the system must support millions of receivers, it should be scalable. In addition
to avoiding global operations, scalability requires that the system not place an
arbitrary number of participant identities in its messages. Second, no human
administrator can be expected to administer millions of end hosts; hence the
system should be self-organizing. Third, we do not want a single point of failure;
therefore we seek a decentralized solution. Further, for maximum performance,
the system should be efficient. This requirement translates into low levels of
control traffic and duplicate data transmission. An additional requirement in
the case of file distribution is reliability; a file is practically useless unless it is
received in its entirety.

From the networking standpoint, this large-scale system ought to be
congestion-friendly. This means that all data flows should obey the conges-
tion signals sent by the network and should not consume more than their fair
share of capacity of any physical link. The system should adapt to the changes
in receiver membership and the characteristics of the wide- area network. In
addition, we also want to minimize the number of “magic constants” (user-
adjustable parameter settings) because in many cases it is impossible to pick
constant values that perform well across a range of conditions.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:4 • D. Kostić et al.

In this article, we present the design and the analysis of Bullet [Kostić et al.
2003b], an algorithm for constructing an overlay mesh for high-bandwidth data
dissemination. In a mesh, a node receives data in parallel from multiple peers
for high throughput and good resilience to network dynamics. At a high level, we
use the following approaches in Bullet. First, we use a source sending strategy
that promotes data diversity. Instead of having a source attempt to send the
same data to each of its children, the source deliberately sends disjoint data to
each of the receivers connected to it. Moreover, for streaming at a fixed rate, each
node uses extra available bandwidth to distribute data in a uniform way that
makes the probability of finding a peer containing missing data equal for all
nodes. Second, to address the issue of finding a set of peers and locating missing
content, we employ a scalable and decentralized mechanism for sampling global
state. Third, to pick an optimal set of peers under changing network conditions,
we augment the “first-level” node sampling mechanism with sampling at the
network level. Specifically, nodes maintain trial slots to try out peers that seem
to have high level of disjoint data and were picked after the first sampling
phase. Finally, we implicitly probe network characteristics as part of active data
transfers rather than explicitly probing for network bandwidth. This feature is
in contrast with other systems and overlay tree mechanisms.

We implemented and evaluated a 1000-node Bullet system in a live emulated
environment, under realistic network conditions, and ran Bullet across the
PlanetLab wide-area testbed. In the presence of congestion induced by cross-
traffic, Bullet can achieve twice the performance of a bandwidth-optimized tree
computed offline with full network information. As an added benefit, Bullet
eliminates the need for probing for available bandwidth in traditional overlay
tree construction techniques. Further, Bullet outperforms epidemic approaches
that use gossiping or antientropy to propagate data.

Contemporaneous to our work on Bullet, several other mesh-based data dis-
semination protocols were proposed, including BitTorrent [Cohen 2003] and
SplitStream [Castro et al. 2003]. To understand some of the tradeoffs associated
with the different design decisions made in these systems, we set out to sys-
tematically identify and evaluate the effects of various architectural decisions
on the performance of mesh-based data dissemination. Throughout this arti-
cle, we weave the description of our experiences with Bullet, and its evolution
to a new system called Bullet′ [Kostić et al. 2005] (Bullet prime). Bullet′ uses
adaptive mechanisms for maintaining a high-download rate under dynamic
network conditions to match the underlying network topology. We conduct a
detailed evaluation of design space parameters for mesh-based distribution
systems and performance evaluation of a number of competing systems run-
ning in both controlled emulation environments and live across the Internet.
Bullet′ outperforms state-of-the-art systems, including BitTorrent, by 25–70%
and exhibits strong performance and reliability in a range of deployment set-
tings. This level of performance does not come at the network’s expense; both
Bullet and Bullet′ have low control overhead (approximately 30 kb/s) and are
congestion-friendly.

The remainder of this article is organized as follows. Section 2 describes
the design space for all high-bandwidth data dissemination systems, Section 3

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:5

Fig. 1. High-level view of a single-source high-bandwidth data dissemination system.

describes the architectural overview of Bullet and Bullet′ and the system com-
ponents of our systems. We describe the specific implementation details of Bul-
let and Bullet′, as well as discuss particular strategies, in Section 4. Section 5
evaluates Bullet’s performance for a variety of network topologies, compares it
to existing multicast techniques, and presents testing our experimental strate-
gies and comparisons with other file distribution systems. We place our work
in the context of the related work in Section 6. Finally, Section 7 presents our
conclusions.

2. DESIGN PRINCIPLES AND PATTERNS

In this section we examine the design principles for high-bandwidth data dis-
semination, exemplified by the following motivating large-scale distributed ap-
plications: (i) multimedia streaming and (ii) file (content) distribution. When
necessary, we make the distinction between these two scenarios.

Throughout the article, we assume that the source transmits the data as a
sequence of data objects (or simply blocks when distributing a file) that serve
as the smallest transfer unit. Otherwise, peers would not be able to help each
other until they had the entire content downloaded. In addition, we concentrate
on the case when the source of the content is the only node that has the content
initially, and wishes to disseminate it to a large group of receivers as quickly as
possible. This usage scenario corresponds to a flash-crowd retrieving popular
content over the Internet. We use Figure 1 to demonstrate the general behavior
of high-bandwidth data dissemination systems. The source is marked S, and
it has content comprising four data objects that it wishes to disseminate (1–4).
It sends these data objects in parallel to the four nodes, A, B, C, and D. These
nodes establish peering relationships, and in this example a receiver A has
three senders (B, C, and D) sending data to it, apart from the source. A and D
have a symmetric peering relationship; A and B do not.

The design of any large-scale high-bandwidth data dissemination system can
be decomposed into a set of decisions regarding the fundamental tenets of peer-
to-peer applications and data transfer. As we see them, these tenets are push
versus pull, encoding data, finding the right peers, methods for requesting data
from those peers, and serving data to others in an effective manner. Addition-
ally, an important design consideration is whether the system should be fair to
participants or focus on being fast. In all cases, however, the underlying goal
is to always keep your incoming pipe full of new data. This means that nodes
must prevent duplicate data transmission, restrict control overhead in favor of

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:6 • D. Kostić et al.

distributing data, and adapt to changing network conditions. In the following
sections, we enumerate these fundamental decisions in more detail.

2.1 Push or Pull

Options for distributing content can be categorized by whether data is pushed
from sources to destinations, pulled from sources by destinations, or a hybrid of
the two. Traditional streaming applications typically choose the push method-
ology because data has low latency and is coming at a constant rate, and all
participants are supposed to get all the data at the same time. To increase
capacity, nodes may simultaneously receive data from multiple senders, and
in a push system, they must then devote overhead to keeping their senders
informed about what they have to prevent receipt of duplicates. Alternately,
systems can use a pull mechanism where receivers must first learn of what
data exists and which nodes have it, and then request it. This has the advan-
tage that receivers, not senders, are in control of the size and specification of
the data that is outstanding to them, which allows them to control and adapt
to their environments more easily. However, this two-step process of discovery
followed by requesting means additional delay before receiving data and extra
control messages in some cases.

2.2 Encoded or Unencoded

The simplest way of sending content involves sending the original, or unen-
coded, data objects into the overlay. An advantage of this approach for large
file distribution is that receivers typically do not have to fit the entire file into
physical memory to sustain high performance. Incoming data objects can be
cached in memory, and later written to disk. Data objects only have to be read
when the peers request them. Even if the data objects are not in memory and
have to be fetched from the disk, pipelining techniques can be used to absorb
the cost of disk reads. As a downside, sending the unencoded file might expose
the “last block” problem of some file distribution mechanisms, when it becomes
difficult for a node to locate and retrieve the last few data objects of the file.

Recently, a number of erasure-correcting codes that implement the “digital
fountain” [Byers et al. 1998] approach were suggested by researchers [Luby
2002; Luby et al. 1997; Maymounkov and Mazieres 2003]. When the source
encodes the file with these codes, any (1 + ε)n correctly received encoded data
objects are sufficient to reconstruct the original n data objects, with the typi-
cally low reception overhead (ε) of 0.03–0.05. These codes hold the potential of
removing the “last block” problem, because there is no need for a receiver to
acquire any particular data object, as long as it recovers a sufficient number
of distinct data objects. We assume that only the source is capable of encoding
the file, and do not consider the potential benefits of network coding [Ahlswede
et al. 2000], where intermediate nodes can produce encoded packets from the
ones they have received thus far.

Based on the publicly available specification, we implemented rateless era-
sure codes [Maymounkov and Mazieres 2003]. Although it is straightforward to
implement these codes with a low CPU encoding and decoding overhead, they

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:7

exhibit some performance artifacts that are relevant from a systems perspec-
tive. First, the reconstruction of the file cannot make significant progress until
a significant number of the encoded data objects is successfully received. Even
with n received data objects (i.e., corresponding to the original file size), only
30% of the file content can be reconstructed [Krohn et al. 2004]. Further, since
the encoded data objects are computed by XOR-ing random sets of original data
objects, the decoding stage requires random access to all of the reconstructed
file data objects. This pattern of access, coupled with the bursty nature of the
decoding process, causes increased decoding time due to disk swapping if all
of the decoded file data objects cannot fit into physical memory.1 Consequently,
the source is forced to transmit the file as a series of segments that can fit into
physical memory of the receivers. Even if all receivers have homogeneous mem-
ory size, this arrangement presents a few problems. First, the source needs to
decide when to start transmitting encoded data objects that belong to the next
segment. If the file distribution mechanism exhibits considerable latency be-
tween the time a data object is first generated and the time when nodes receive
it, the source might send too many unnecessary data objects into the overlay.
Second, receivers need to simultaneously locate and retrieve data belonging to
multiple segments. Opening too many TCP connections can also affect overall
performance. Therefore, the receivers have to locate enough senders hosting the
segments they are interested in, while still being able to fill their incoming pipe.

We have observed a four percent overhead when encoding and decoding files
of tens of megabytes in size. Although mathematically possible, it is difficult
to make this overhead significantly smaller via parameter settings or a large
number of data objects. Since the data objects should be sufficiently large to
overcome the fixed overhead due to per-data object headers, we cannot use an
excessive number of data objects. Similarly, since a file consisting of a large
number of data objects may not fit into physical memory, a segment may not
have enough data objects to reduce the decoding overhead. Finally, the decoding
process is sensitive to the number of recovered degree-one (unencoded) data
objects that are generated with relatively low probability (e.g., 0.01). These
data objects are necessary to start the decoding process and without a sufficient
number of these data objects the decoding process cannot complete.

Another class of “digital fountain” codes, called Raptor codes [Shokrollahi
2003], have recently been developed. These codes are systematic, meaning that
a system using these codes first transmits the unencoded blocks, and only then
starts transmitting the encoded blocks. The presence of unencoded blocks re-
duces the memory footprint required for decoding a file. These blocks make the
scheme more desirable for streaming because a segment of original data that
cannot be reconstructed is useless, if we assume that a stream is broken into
segments. The reception overhead of Raptor codes is even lower than for the
rateless and LT codes, often as low as 2%.

1We are assuming a memory-efficient implementation of the codes that releases the memory oc-

cupied by the encoded data object when all the original data objects that were used in in its con-

struction are available. Performance can be even worse if the encoded data objects are kept until

the file is reconstructed in full.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:8 • D. Kostić et al.

Other encoding schemes might be used to improve efficiency of real-time
streaming. If multimedia data is being streamed to a set of heterogeneous re-
ceivers with variable bandwidth, MDC [Goyal 2001] allows receivers obtaining
different subsets of the data to still maintain a usable multimedia stream. We
quantify the potential benefits of using encoding at the source in Section 5.12.

2.3 Peering Strategy

In both the streaming and the file distribution cases, a node receives data by
peering with neighbors and receiving data objects from them. To enable simulta-
neous data retrieval from multiple peers, each node requires techniques to learn
about suitable remote peers, selecting those that have useful and sufficient lev-
els of available bandwidth, and determining the ideal set of peers which can op-
timize the incoming bandwidth of useful data. Ideally, a node would have perfect
and timely information about the distribution of data objects throughout the
system and would be able to download any data object from any other peer, but
any such approach requiring global knowledge cannot scale. Instead, the system
must approximate the peering decisions. It can do this by using a centralized
coordination point, though constantly updating that point with updates of data
objects received would also not scale, while also adding a single point of failure.
Alternatively, a node could simply maintain a fixed set of peers, though this ap-
proach would suffer from changing network and node conditions or an initially
poor selection of peers. One might also imagine using a DHT to coordinate loca-
tion of nodes with given data objects. While we have not tested this approach,
we reason that it would not perform well due to the extra overhead required for
locating nodes with each data object. Overall, a good approach to picking peers
would be one which neither causes nodes to maintain global knowledge, nor to
communicate with a large number of nodes, but manages to locate peers which
have a lot of data to give it. A good peering strategy will also allow the node to
maintain a set of peers small enough to minimize control overhead, but large
enough to keep the pipe full in the face of changing network conditions.

2.4 Request Strategy

In either a push- or pull-based system, there has to be a decision made about
which data objects should be queued to send to which peers. In a pull-based sys-
tem, this is a request for data object. Therefore we call this the request strategy.
For the request strategy, we need to answer several important questions.

First, what is the best order for requesting data objects? For example, if
all nodes make requests for the data objects in the same order, the senders
in peering relationships will be sending the same data to all the peers, and
there would be very little opportunity for nodes to help each other to speed
up the overall progress. Sometimes, for example, when streaming live data, the
source produces the content at a fixed rate and effectively controls the amount of
available data in the overlay. The receivers’ “play points,” defining the positions
within the stream currently being played, are also expected to be close to each
other. When compared to file distribution, both of these factors might limit the
choices in requesting a data object while streaming live content.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:9

Second, for any given data object, more than one of the senders might have it.
How does the node choose the sender that is going to provide this particular data
object, or in a pull-based system, how can senders prevent queuing the same
data object for the same node? Further, should a node request the data object
immediately after it learns about its existence at a sender, or should it wait
until some of its other peers acquire the same data object? There is a tradeoff,
because reacting quickly might bring the data object to this node sooner, and
make it available for its own receivers to download sooner. However, the first
sender over time that has this data object might not be the best one to serve
it; in this case it might be prudent to wait a bit longer, because the data object
download time from this sender might be high due to low available bandwidth
within the network.

Third, how much data should be requested from any given sender? Request-
ing too few data objects might not fill the node’s incoming pipe, whereas re-
questing too much data might force the receiver to wait too long for a data
object that it could have requested and received from some other node.

Finally, where should the request logic be placed? One option is to have the
receiver make explicit requests for data objects, which comes at the expense of
maintaining data structures that describe the availability of each data object,
the time of requests, etc. In addition, this approach might incur considerable
CPU overhead for choosing the next data object to retrieve. If this logic is in the
critical path, the throughput in high-bandwidth settings may suffer. Another
option is to place the decision-making at the sender. This approach makes the
receiver simpler, because it might just need to keep the sender up-to-date with
a digest of data objects it currently has. Since a node might implicitly request
the same data object from multiple senders by not having that data object in
the digests, this approach is highly resilient. On the other hand, duplicate data
objects could be sent from multiple senders if senders do not synchronize their
behavior. Further, message overhead will be higher than in the receiver-driven
approach due to digests.

2.5 Sending Strategies

All techniques for distributing content will need a strategy for sending data to
peers to optimize the performance of the distribution. We define the sending
strategy as “given a set of data items destined for a particular receiver, in what
order should they be sent?” This is differentiated from the request strategy in
that it is concerned with the order of queued data objects rather than which data
objects to queue. Here, we separate the strategy of the single source from that
of the many peers, since for any data distribution to be successful, the source
must share all parts of the content with others. In addition, any inefficiency
in the source sending strategy (e.g., duplicate data) has a profound effect on
overall performance.

2.5.1 Source. For file distribution, we consider the case in this article
where the source is available to send file data objects for the entire duration of
a session. This puts it in a unique position to be able to both help all nodes, and
to affect the performance of the entire download. As a result, it is especially

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:10 • D. Kostić et al.

important that the source not send the same data twice before sending the en-
tire file once. Otherwise it may prevent fast nodes from completing because it
is still “hoarding” the last data object. This can be accomplished by splitting
the file in various ways to send to its peers. The source must also consider what
kinds of reliability and retransmission it should use and what happens in the
face of peer failure. For example, suppose the source sends out each data object
exactly once. It then must handle the case when a peer that receives a particu-
lar data object crashes before sending it to other receivers. This problem is not
as pronounced for nonsource nodes, where other peers can assist one another.

For streaming at a fixed rate, the source has the opportunity to use its
available outgoing bandwidth in an attempt to improve the overall bandwidth
achieved by receivers. Conceptually, one way of accomplishing this is by sending
duplicate data after satisfying all data requests from receivers.

2.5.2 Nonsource. There are several options on the order to send nodes data.
All of them fulfill the near-term goal for keeping a node’s pipe full of useful data.
But a forward-thinking sender has some other options available to it which help
future downloads, by making it easier for nodes to locate disjoint data. Consider
that a node A will send data objects 1, 2, and 3 to receivers B and C. If it sends
them in numerical order each time, B and C will both get 1 first. Assuming the
same transmission rate to both nodes, after completing transmission of object
1, the utility to nodes who have peered with both B and C is just 1 though,
because there is only 1 new data object available. But if node A sends data
objects in different orders, the utility to peers of B and C is doubled. A good
sending strategy will create the greatest diversity of data objects in the system.
In the streaming case, the nonsource nodes can try to aid the overall recovery
of data by prudently using their outbound bandwidth.

2.6 Fair-first or Fast-first

An important consideration for the design of a file distribution or a streaming
system is whether it is the highest priority that it be fair to network partic-
ipants, or fast. Some protocols, like BitTorrent and SplitStream, have some
notion of fairness and try to make all nodes both give and take. BitTorrent does
this by using tit-for-tat [Cohen 2003] in its sending and requesting strategies,
assuring that peers share and share alike. SplitStream does this by requiring
that each node is forwarding at least as much as it is receiving. It is a nice
side effect that, in a symmetric network, this equal sharing strategy can be
close to optimal, since all peers can offer as much as they can take, and one
peer is largely as good as the next. Techniques have been proposed [Sung et al.
2006] to provide incentives to nodes to contribute more bandwidth than they
need.

But this decision fundamentally prevents the possibility that some nodes
have more to offer and can be exploited to do so. It is clear that there exist
scenarios where there are tradeoffs between being fair and being fast. The ap-
propriate choice largely depends on the use of the application, financial matters,
and the mindset of the users in the system. Experience with some peer-to-peer
systems indicates that some nodes are willing to give more than they take, while

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:11

Fig. 2. High-level view of Bullet’s operation.

other nodes cannot share fairly due to network configurations and firewalls. In
the remainder of the section, we assume that nodes are willing to cooperate
both during and after the data dissemination, and do not consider enforcing
fairness. Instead of considering fairness, we concentrate on performance and
reliability. Consider the following scenarios where a single entity has full con-
trol over all nodes participating in content distribution: (i) distribution of con-
tent among CDN nodes, (ii) infrastructure nodes in a video distribution system,
(iii) transmitting the executable and datafiles as quickly as possible in a wide-
area testbed (e.g., PlanetLab).

3. ARCHITECTURAL OVERVIEW AND BACKGROUND

In this section, we start with the high-level overviews of Bullet and Bullet′,
our high-bandwidth data dissemination systems. We started with Bullet, en-
visioning a general-purpose data dissemination mechanism. We demonstrated
superior streaming performance relative to overlay trees and gossiping mech-
anisms. We then shifted our attention to the large-file distribution problem,
and identified a number of shortcomings with Bullet in this role. We describe
our findings as discussions throughout the article. We then created Bullet′ as
an embodiment of best practices as well as new techniques for adapting to dy-
namic network conditions. In this section, we include the background on each
of the techniques that we employ as fundamental building blocks for our work.
Section 4 then presents the details of the Bullet and Bullet′ architectures.

3.1 Bullet

Our approach to high-bandwidth streaming centers around the techniques de-
picted in Figure 2. First, we split the target data stream into segments which are
further subdivided into individual (typically packet-sized) objects. Depending
on the requirements of the target applications, objects may be encoded [Goyal
2001; Luby et al. 1997] to make data recovery more efficient. Next, we purpose-
fully disseminate disjoint objects to different clients at a rate determined by
the available bandwidth to each client. We use a congestion-friendly protocol

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:12 • D. Kostić et al.

to communicate among all nodes in the overlay in a congestion-responsive and
TCP-friendly manner.

Given the above techniques, data is spread across the overlay tree at a rate
commensurate with the available bandwidth in the overlay tree. Our overall
goal, however, is to deliver more bandwidth than would otherwise be available
through any tree. Thus, at this point, nodes require a scalable technique for
locating and retrieving disjoint data from their peers. In essence, these per-
pendicular links across the overlay form a mesh to augment the bandwidth
available through the tree. In Figure 2, node D only has sufficient bandwidth
to receive three objects per time unit from its parent. However, it is able to lo-
cate two peers, C and E, who are able to transmit “missing” data objects, in this
example increasing delivered bandwidth from three objects per time unit to six
data objects per time unit. Locating appropriate remote peers cannot require
global state or global communication. Thus we propose the periodic dissemina-
tion of changing, uniformly random subsets of global state to each overlay node
once per configurable time period. This random subset contains summaries of
the objects available at a subset of the nodes in the system. Each node uses this
information to request data objects from remote nodes that have significant
divergence in object membership. It then attempts to establish a number of
these peering relationships with the goals of minimizing overlap in the objects
received from each peer and maximizing the total useful bandwidth delivered
to it.

Bullet requires an underlying overlay tree for the protocol that delivers ran-
dom subsets of participants’s state to nodes in the overlay, informing them of a
set of nodes that may be good candidates for retrieving data not available from
any of the node’s current peers and parent. While we also use the underlying
tree for baseline streaming, this is not critical to Bullet’s ability to efficiently
deliver data to nodes in the overlay. As a result, Bullet is capable of functioning
on top of essentially any overlay tree. In our experiments, we have run Bullet
over random and bandwidth-optimized trees created offline (with global topo-
logical knowledge). Bullet registers itself with the underlying overlay tree so
that it is informed when the overlay changes as nodes come and go or make
performance transformations in the overlay.

As with streaming overlays trees, Bullet can use standard transports such
as TCP and UDP as well as our implementation of TFRC [Floyd et al. 2000].
For simplicity, we assume that packets originate at the root of the tree and are
tagged with increasing sequence numbers. Each node receiving a packet will
optionally forward it to each of its children, depending on a number of factors
relating to the child’s bandwidth and its relative position in the tree.

3.2 Bullet′

An evolution from Bullet, Bullet′ builds upon the overlay mesh data dissem-
ination approach advocated by Bullet, and considers the problem of large file
dissemination to a large group of Internet users. One difference from Bullet is in
the hybrid push/pull (Section 2.1) architecture; we enforce that only the source
pushes and the receivers pull. The main reason for this choice is the desire to

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:13

Fig. 3. Bullet’ architectural overview. Gray lines represent a subset of peering relationships that

carry explicitly pulled blocks.

minimize duplicate data transmission from the source. Further, to better ad-
dress the challenges presented by the Internet where systems based on magic
constants break down in unforeseen conditions, Bullet′ employs adaptive strate-
gies to self-tune to dynamically changing network conditions and wide range of
deployment settings. In addition, we minimize the number of user-adjustable
parameters because in many cases it is impossible to find system-wide param-
eter settings that perform well across a range of conditions.

Figure 3 depicts the architectural overview of Bullet′. As in Bullet, we use
a randomly constructed overlay tree for joining the system and for transmit-
ting control information (shown in thin dashed lines, as step 1). To enforce
diversity and to avoid wasting the source’s outgoing bandwidth on duplicate
data, however, the source pushes the file blocks to children in the control tree
in a round-robin fashion, according to the available bandwidth to each child
(step 2). We use a scalable, decentralized protocol to distribute changing, uni-
formly random subsets of system-wide file summaries over the control tree.
Using this protocol, nodes advertise their identity and the block availability.
Receivers use this information (step 3) to choose a set of senders to peer with,
receive their file information (step 4), request (step 5), and subsequently receive
(step 6) file blocks, effectively establishing an overlay mesh on top of the under-
lying control tree. Moreover, receivers make local decisions on the number of
senders as well as the amount of outstanding data, adjusting the overlay mesh
over time to conform to the characteristics of the underlying network. In de-
parture from Bullet, Bullet′ request strategy is receiver-driven. Finally, during
the file transfer, senders keep their receivers updated with the description of
their newly received file blocks (step 4).

To deal with failures of control-tree children before they have a chance to
transmit blocks to other nodes in the overlay, the source becomes a regular
peer and switches to pull mode after sending out the file exactly once. This
enables receivers to peer with the source as with any other peer and retrieve
missing blocks.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:14 • D. Kostić et al.

3.3 System Components

3.3.1 RanSub. To address the challenge of locating disjoint content within
the system, we use RanSub [Kostić et al. 2003a], a scalable approach to dis-
tributing changing, uniform random subsets of global state to all nodes of an
overlay tree. RanSub assumes the presence of some scalable mechanism for
efficiently building and maintaining the underlying tree. A number of such
techniques are described in Banerjee et al. [2002], hua Chu et al. [2000], Jan-
notti et al. [2000], Kostić et al. [2003a], Rodriguez et al. [2004b], and Rowstron
et al. [2001].

RanSub distributes random subsets of participating nodes throughout the
tree using collect and distribute messages. Collect messages start at the leaves
and propagate up the tree, leaving state at each node along the path to the
root. Distribute messages start at the root and travel down the tree, using
the information left at the nodes during the previous collect round to dis-
tribute uniformly random subsets to all participants. Using the collect and dis-
tribute messages, RanSub distributes a random subset of participants to each
node once per epoch. The lower bound on the length of an epoch is determined
by the time it takes to propagate data up then back down the tree, or roughly
twice the height of the tree. For appropriately constructed trees, the minimum
epoch length will grow with the logarithm of the number of participants, though
this is not required for correctness.

As part of the distribute message, each participant sends a uniformly random
subset of remote nodes, called a distribute set, down to its children. The contents
of the distribute set are constructed using the collect set gathered during the
previous collect phase. During this phase, each participant sends a collect set
consisting of a random subset of its descendant nodes up the tree to the root
along with an estimate of its total number of descendants. After the root receives
all collect sets and the collect phase completes, the distribute phase begins again
in a new epoch.

One of the key features of RanSub is the Compact operation. This is the
process used to ensure that membership in a collect set propagated by a node
to its parent is both random and uniformly representative of all members of
the subtree rooted at that node. Compact takes multiple fixed-size subsets and
the total population represented by each subset as input, and generates a new
fixed-size subset. The members of the resulting set are uniformly random rep-
resentatives of the input subset members.

RanSub offers several ways of constructing distribute sets: (i) RanSub-
ordered, (ii) RanSub-nondescendants, and (iii) RanSub-all. For Bullet, we
choose the RanSub-nondescendants option. In this case, each node receives
a random subset consisting of all nodes excluding its descendants. This is ap-
propriate for our download structure where descendants are expected to have
less content than an ancestor node in most cases.

A parent creates RanSub-nondescendants distribute sets for each child by
compacting collect sets from that child’s siblings and its own distribute set.
The result is a distribute set that contains a random subset representing all
nodes in the tree except for those rooted at that particular child. We depict an

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:15

Fig. 4. An example of collect (on the left) and distribute (on the right) RanSub phases.

example of RanSub’s collect-distribute process in Figure 4. This example shows
the two phases of the RanSub protocol that occur in one epoch. The collect phase
is shown on the left, where the collect sets are traveling up the overlay to the
root. The distribute phase on the right shows the distribute sets traveling down
the overlay to the leaf nodes. In the figure, AS stands for node A’s state.

For Bullet′, we choose the RanSub-all option. Here, each node receives a
random subset consisting of all system nodes including its descendants.

3.3.2 Informed Content Delivery Techniques. Assuming we can enable a
node to locate a peer with disjoint content using RanSub, we need a method for
reconciling the differences in the data. Additionally, we require a bandwidth-
efficient method with low computational overhead. We chose to implement the
approximate reconciliation techniques proposed in Byers et al. [2002] for these
tasks in Bullet.

To describe the content, nodes maintain working sets. The working set con-
tains sequence numbers of packets that have been successfully received by each
node over some period of time. We need the ability to quickly discern the resem-
blance between working sets from two nodes and decide whether a fine-grained
reconciliation is beneficial. Summary tickets, or min-wise sketches [Broder
1997], serve this purpose. The main idea is to create a summary ticket that
is an unbiased random sample of the working set. A summary ticket is a
small fixed-size array. Each entry in this array is maintained by a specific per-
mutation function. The goal is to have each entry populated by the element
with the smallest permuted value. To insert a new element into the summary
ticket, we apply the permutation functions in order and update array values as
appropriate.

To perform approximate fine-grain reconciliation, a peer A sends its digest
to peer B and expects to receive packets not described in the digest. For this
purpose, we use a Bloom filter [Bloom 1970], a bit array of size m with k in-
dependent associated hash functions. When using Bloom filters, the insertion
of different elements might cause all the positions in the bit array correspond-
ing to an element that is not in the set to be nonzero. In this case, we have
a false positive. Therefore, it is possible that peer B will not send a packet to
peer A even though A is missing it. To control the fraction of false positives, we
carefully manage the number of entries in the Bloom filter while taking into
account the size of filter and the number of hash functions.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:16 • D. Kostić et al.

In our Bullet′ evaluation, we transmitted unencoded files. In this case, the
data objects’ (blocks’) sequence numbers do not come from a wide-range of en-
coded objects. Instead, they are simply numbered 1 · · · n, where n is the overall
number of file blocks. We therefore switch to a different way to represent sum-
maries in Bullet′, described in detail in Section 4.2.3.1.

4. IMPLEMENTATION

In this section we present the details of our systems, starting with the common
framework for implementing them. Given that many of the Bullet′ mechanisms
and strategies evolved from Bullet based on our experiences while using Bullet
for file distribution, we intertwine the discussion of these two systems and
organize it along the basic design principles described in Section 2. The topics
described include the peering strategy, the request strategy, and the sending
strategy. After describing the particulars of a Bullet mechanism, we follow up
with a discussion before proceeding on to the Bullet′ equivalent.

4.1 Implementation Framework

We have implemented Bullet and Bullet′ using MACEDON. MACEDON
[Rodriguez et al. 2004a] is a tool which makes the development of large scale
distributed systems simpler by enabling the specification of overlay algorithms
in a simple domain-specific language. It enables the reuse of the majority of
common functionality in these distributed systems, including probing infras-
tructures, thread management, message passing, and debugging environment.

4.1.1 Layering. MACEDON applications, services and libraries are lay-
ered. The full implementation of Bullet and Bullet′ consists of a generic file
distribution application, the overlay network algorithms, and the algorithm for
maintaining the random overlay tree. RanSub is embedded into the both Bullet
and Bullet′ MACEDON protocol implementations. The overlay algorithms use
transport protocols via transport abstractions provided by MACEDON that ap-
pear at the bottom of this hierarchy. The layering is not without shortcomings.
The overlays cannot, for example, control the TCP or UDP socket buffer size.
Instead, the overlay has control over the number of empty slots in front of of the
socket buffers. In our implementation, the only data objects at Bullet’s disposal
were in its own cache. Even when transmitting a file using Bullet, we did not
provide Bullet access to the file data stored on local disk. We refer to this kind
of recovery as main line reconciliation.

4.1.2 Streaming Application. We have implemented a simple streaming
application capable of streaming data over any specified tree or overlay mul-
ticast topology. In our implementation, we are able to stream data through
overlay trees using UDP, TFRC [Floyd et al. 2000], or TCP. We used TFRC for
the streaming experiments presented in this article.

4.1.3 Download Application. To evaluate various file distribution mech-
anisms, we implemented a generic file download application that can oper-
ate in either encoded or unencoded mode. In the encoded mode, it operates by

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:17

generating continually increasing block numbers and transmitting them using
the macedon multicast API call on the overlay algorithm. In unencoded mode,
it operates by transmitting the blocks of the file once using macedon multicast.
This makes it possible for us to compare download performance over the set
of overlays specified in MACEDON. In both encoded and unencoded cases, the
download application also supports a request function from the overlay network
to provide the block of a given sequence number, if available, for transmission.
The download application also supports the reconstruction of the file from the
data blocks delivered to it by the overlay. The download application takes as
parameters block size and file name. We use standard TCP for file download
experiments in this article.

4.2 Peering Strategy

4.2.1 Bullet. We first describe Bullet and then the changes in Bullet′ for a
number of peering strategy aspects.

4.2.1.1 Finding Overlay Peers. RanSub periodically delivers subsets of uni-
formly random selected nodes to each participant in the overlay. Bullet receivers
use these lists to locate remote peers able to transmit missing data items with
good bandwidth. RanSub messages contain a set of summary tickets that in-
clude a small (120-byte) summary of the data that each node contains. RanSub
delivers subsets of these summary tickets to nodes every configurable epoch (5 s
by default). Each node in the tree maintains a working set of the packets it has
received thus far, indexed by sequence numbers. Nodes associate each working
set with a Bloom filter that maintains a summary of the packets received thus
far. Since the Bloom filter does not exceed a specific size (m) and we would like
to limit the rate of false positives, Bullet periodically cleans up the Bloom fil-
ter by removing lower sequence numbers from it. This allows us to keep the
Bloom filter population n from growing at an unbounded rate. The net effect is
that a node will attempt to recover packets for a finite amount of time depend-
ing on the packet arrival rate. Similarly, Bullet removes older items that are
not needed for data reconstruction from its working set and summary ticket.
To allow clean up, Bloom filter entries are integers. Hence, inserting an ele-
ment involves incrementing the appropriate entries, while removal amounts to
decrementing of the required entries. For network transmission, the “counting”
Bloom filters are reduced to the “classic” form of 1 bit/entry to reduce control
overhead.

We use the collect and distribute phases of RanSub to carry Bullet summary
tickets up and down the tree. In our current implementation, we use a set size
of 10 summary tickets, allowing each collect and distribute to fit well within
the size of a nonfragmented IP packet. Though Bullet supports larger set sizes,
we expect this parameter to be tunable to specific applications’ needs. In prac-
tice, our default size of 10 yields favorable results for a variety of overlays and
network topologies. In essence, during an epoch a node receives a summarized
partial view of the system’s state at that time. Upon receiving a random subset
each epoch, a Bullet node may choose to peer with the node having the lowest
similarity ratio (the number of identical entries in the two summary tickets

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:18 • D. Kostić et al.

divided by the total number of summary ticket entries) when compared to its
own summary ticket. This is done only when the node has sufficient space in
its sender list to accept another sender (senders with lackluster performance
are removed from the current sender list as described in Section 4.2.1.2). Once
a node has chosen the best node, it sends it a peering request containing the re-
questing node’s Bloom filter. Such a request is accepted by the potential sender
if it has sufficient space in its receiver list for the incoming receiver. Otherwise,
the send request is rejected (space is periodically created in the receiver lists
as further described in Section 4.2.1.2).

4.2.1.2 Improving the Bullet Mesh. Bullet allows a maximum number of
peering relationships. That is, a node can have up to a certain number of re-
ceivers and a certain number of senders (each defaults to 10 in our implementa-
tion). A number of considerations can make the current peering relationships
sub-optimal at any given time: (i) the probabilistic nature of RanSub means
that a node may not have been exposed to a sufficiently appropriate peer, (ii) re-
ceivers greedily choose peers, and (iii) network conditions are constantly chang-
ing. For example, a sender node may wind up being unable to provide a node
with very much useful (nonduplicate) data. In such a case, it would be advan-
tageous to remove that sender as a peer and find some other peer that offers
better utility.

Each node periodically (every few RanSub epochs) evaluates the bandwidth
performance it is receiving from its sending peers. A node will drop a peer if it
is sending too many duplicate packets when compared to the total number of
packets received. This threshold is set to 50% by default. If no such wasteful
sender is found, a node will drop the sender that is delivering the least amount
of useful data to it. It will replace this sender with some other sending peer
candidate, essentially reserving a trial slot in its sender list. In this way, we
are assured of keeping the best senders seen so far and will eliminate senders
whose performance deteriorates with changing network conditions.

Likewise, a Bullet sender will periodically evaluate its receivers. Each re-
ceiver updates senders of the total received bandwidth. The sender, knowing
the amount of data it has sent to each receiver, can determine which receiver
is benefiting the least by peering with this sender. This corresponds to the one
receiver acquiring the least portion of its bandwidth through this sender. The
sender drops this receiver, creating an empty slot for some other trial receiver.
This is similar to the concept of weans presented in Kostić et al. [2003b].

4.2.2 Discussion

4.2.2.1 Improving the Startup Time. We observed that nodes in the Bullet
mesh were taking considerable time to ramp-up to a high download rate after
starting up. The long startup time is also evident from Figure 12. We attributed
this behavior to the Bullet’s peering strategy that grows the peer set by one node
a time, with each delivery of the RanSub distribute set. Given that a node re-
quires several sending peers (10 in the Bullet baseline code) for high bandwidth,
and the 5-s RanSub epoch length, the startup time could be close to 1 min. There-
fore, we decided to allow a node to try establishing peering relationships with

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:19

as many senders as its current limitation on the sender set size allows. This
change resulted in a considerable reduction in the file download time, especially
for smaller files when the startup phase represents a considerable portion of
the overall download time. With the new startup strategy, a node ramps up to
several Mb/s download bandwidth in 5–10 s even in 250-node overlays.

4.2.2.2 Managing Peer Sets. For nodes to fill their pipes with useful data,
it is imperative that they locate and maintain a set of peers that can provide
them with good service. In the face of bandwidth changes and unstable net-
work conditions, we determined that a fixed number of peers is suboptimal (see
Section 5.10). Further, we noticed that Bullet’s policy of closing the slowest
sender each epoch might unnecessarily discard a sender that is only marginally
slower than the rest of the sending peer set. These findings pointed to a revision
of the mechanisms for improving the overlay mesh.

4.2.3 Bullet′

4.2.3.1 Finding Overlay Peers. Bullet′ nodes find peers in a way that is
similar to Bullet. Here, we use RanSub-all to periodically delivers uniformly
random subsets of all nodes to each participant in the overlay. Note that we
depart from the non-descendants option used by Bullet. Since only the source’s
children receive pushed data and all other nodes pull file blocks, there is no need
to instruct RanSub to avoid the descendant nodes when there is no tree-based
data dissemination systemwide. We also use 10 summaries in Bullet′; the only
difference is in the type of summaries. When transmitting an unencoded file,
the summary can be an exact bitmap of the file blocks if it fits into the given
space (120 bytes). Otherwise, it can either be a histogram-type summary with
the number of blocks locally available in each 256-bit range (each block count
can then be represented with 8 bits within the summary), or a nonzero bitmap
of the last portion of the file recovered thus far that fits into the allotted size. In
our evaluation, we use the latter option if the bitmap does not fit in its entirety.

4.2.3.2 Improving the Bullet′ Mesh. The peering mechanism used in Bullet′

evolved based on our experience with Bullet. Bullet′ must discard peers whose
service degrades, and it must also adaptively decide how many peers it should
be downloading from/sending to. Note that peering relationships are not in-
herently bidirectional; two nodes wishing to receive data from each other must
establish peering links separately. Here we use the terms sender to refer to
a peer a node is receiving data from and receiver to refer to a peer a node is
sending data to.

Each node maintains two variables, namely MAX SENDERS and MAX RECEIVERS,
which specify how many senders and receivers the node wishes to have at max-
imum. Initially, these values are set to 10, the value we have experimentally
chosen for the released version of Bullet. Bullet′ also imposes hard limits of
6 and 25 for the number of minimum/maximum senders and receivers. Each
time a node receives a RanSub distribute message containing a random sub-
set of peers and the summaries of their file content, it makes an evaluation
about its current peer sets and decides whether it should add or remove both

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:20 • D. Kostić et al.

Fig. 5. ManageSenders() pseudocode.

senders and receivers. If the node has its current maximum number of senders,
it makes a decision as to whether it should either “try out” a new connection or
close a current connection based on the number of senders and bandwidth re-
ceived when the last distribute message arrived. A similar mechanism is used
to handle adding/removing receivers, except in this case Bullet′ uses outgoing
bandwidth instead of incoming bandwidth. Figure 5 shows the pseudocode for
managing senders.

Every 5 s, Bullet′ calculates the average and standard deviation of band-
width received from all of its senders. It then sorts the senders in order of least
bandwidth received to most, and disconnects itself from any sender who is more
than 1.5 standard deviations away from the mean, so long as it does not drop
below the minimum number of connections (6). This way, Bullet′ is able to keep
only the peers who are the most useful to it. A fixed minimum bandwidth was
not used so as to not hamper nodes who are legitimately slow. In addition, the
slowest sender is not always closed since if all of a peer’s senders are approx-
imately equal in terms of bandwidth provided, then none of them should be
closed.

A nearly identical procedure is executed to remove receivers who are poten-
tially limiting the outgoing bandwidth of a node. However, Bullet′ takes care to
sort receivers based on the ratio of their bandwidth they are receiving from a
particular sender to their total incoming bandwidth. This is important because

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:21

Fig. 6. A Bullet receiver’s view of data.

we do not want to close peers who are getting a large fraction of their bandwidth
from a given sender. We chose the value of 1.5 standard deviations because 1
would lead to too many nodes being closed whereas 2 would only permit a very
few peers to ever be closed.

4.3 Request Strategy

4.3.1 Bullet. This section describes how Bullet receivers orchestrate data
transfers from the chosen peers. Recall that the peering relationship is initiated
by the receiver, and it involves sending the digest (a Bloom filter) of currently
available data objects to the potential sender. Therefore, the Bullet request
strategy is implicit, and it empowers the senders to decide which data objects
will be sent to the receivers.

Assuming it has space for the new peer, a recipient of the peering request
installs the received Bloom filter and will periodically transmit keys not present
in the Bloom filter to the requesting node. The requesting node will refresh its
installed Bloom filters at each of its sending peers periodically. Along with the
fresh filter, a receiving node will also assign a portion of the sequence space to
each of its senders. In this way, a node is able the reduce the likelihood that two
peers simultaneously transmit the same key to it, wasting network resources.
A node divides the sequence space in its current working set among each of its
senders uniformly.

As illustrated in Figure 6, a Bullet receiver views the data space as a matrix
of packet sequences containing s rows, where s is its current number of sending
peers. A receiver periodically (every 5 s by default) updates each sender with
its current Bloom filter and the range of sequences covered in its Bloom filter.
This identifies the range of packets that the receiver is currently interested in
recovering. Over time, this range shifts as depicted in Figure 6(b)). In addition,
the receiving node assigns to each sender a row from the matrix, labeled mod .
A sender will forward packets to the receiver that have a sequence number x
such that x modulo s equals the mod number. In this fashion, receivers register
to receive disjoint data from their sending peers.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:22 • D. Kostić et al.

By specifying ranges and matrix rows, a receiver is unlikely to receive dupli-
cate data items, which would result in wasted bandwidth. A duplicate packet,
however, may be received when a parent recovers a packet from one of its peers
and relays the packet to its children (and descendants). In this case, a descen-
dant would receive the packet out of order and may have already recovered
it from one of its peers. For streaming cases when the streaming rate is less
than the node access link capacity, this wasteful reception of duplicate packets
is tolerable; less than 10% of all received packets are duplicates in our experi-
ments. Section 4.3.2.1 describes our experiences with this request strategy for
file distribution.

4.3.2 Discussion: Limitations of the Bullet Request Strategy for File
Distribution. This section describes our efforts to overcome the limitations
of the Bullet request strategy while trying to distribute a file as quickly as
possible with Bullet in the file distribution role.

4.3.2.1 Duplicate Data Caused by the Request Strategy. The first problem
we examined was duplicate data. Specifically, every epoch (5 s by default), re-
ceivers were transmitting the digests of the locally available data to senders,
along with a total count of senders and a sender-specific modulo index. Senders
would compute a list of missing blocks for that particular digest, randomize the
list, and then try transmitting those blocks in the nonblocking fashion to the
requesting receiver. Modulo indices were rotated each epoch, which meant that
a receiver could implicitly rerequest a block from another sender although that
particular block was either “in-flight,” or enqueued in the TCP socket buffer, or
in the MACEDON TCP transport queue positioned directly in front of the TCP
socket buffer. We substantially reduced duplicate block overhead by shrinking
the MACEDON TCP transport queues to only one block per receiving peer.
Nevertheless, we could not completely eliminate the duplicates and we were
forced to keep relatively small block sizes that were not effectively neutral-
izing MACEDON header overhead. Experiments have shown that duplicate
data amounted to between 5 and 10% of the overall data received. Since we
were striving for the fastest file distribution mechanism possible, this perfor-
mance loss was not acceptable. In addition, the Bullet request strategy incurs
a potentially high latency to retrieve a particular block, which exacerbates the
“last-block” problem of unencoded file distribution systems. Subsequently, we
decided that we needed an improved request strategy.

4.3.2.2 Imperfections in the Recovery Strategy. In parallel with our efforts
on reducing duplicate data reception, we identified several imperfections in the
recovery strategy. Some of the imperfections were due to t̊o the use of Bloom
filters as digests and their inherent false positive rate, even though it was fixed
at low 1%. The rest of the problems were due to “main-line” reconciliation,
where the download application did not have a chance to send any data it has
already received to its peers: reconciliation was limited to the buffer size within
the Bullet code.

To cope with the imperfections in the recovery strategy we implemented
the “rateless” erasure codes [Maymounkov and Mazieres 2003]. Summarized

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:23

experiences that are generally applicable are described in Section 2.2; here we
outline some implementation peculiarities.

4.3.2.3 Erasure Encoding. Once we started experimenting with encoded
files, we began realizing the limitations of encoding from the system perspective.
If the encoded blocks cannot fit in physical memory, the performance suffers as
the receiver is forced to swap the blocks from the disk during decoding when
blocks are accessed at random. This design constraint forced us to send the file in
multiple segments, requiring resolution of some important issues. For example,
we had to deal with “main-line” reconciliation (aiding the multicast mechanism
provided by Bullet) and incorporate perpendicular downloads of segments from
the peers that have already reconstructed those segments. We were achieving
good performance, but the receivers behind slower access links had trouble
keeping up. Subsequently, we wanted to reduce the protocol overhead to explore
the limits of this dissemination model.

4.3.2.4 Reducing Control Overhead. In an effort to increase the through-
put of the main line reconciliation mechanism, we decided to streamline it by
reducing control overhead. For example, a Bullet receiver is sending the same
bloom filter to each of the 10 senders along with the modulo number stating
what portion of the filter was useful to that peer. Maintaining smaller bloom fil-
ters for each modulo number resulted in factor of 7 control overhead reduction
(Bloom filters that were 10 times smaller were not able to capture the same
amount of information as a single Bloom filter). The overall performance im-
provement depended on the speed of the node’s access links, but it was no more
than 10%.

4.3.3 Bullet′. Armed with the Bullet performance results and difficulties
with its request strategy (Section 4.3.2.1), we decided to make the Bullet′ re-
quest strategy receiver driven. Here, we discuss how requests are ordered in
Bullet′, how nodes choose the amount of outstanding data (flow control), and
how senders keep receivers up-to-date.

4.3.3.1 Ordering Requests. We considered using four different strategies for
ordering requests when designing Bullet′. All of the strategies are for making
local decisions on either the unencoded or source-encoded file.

Given a per-peer list representing blocks that are available from that peer,
the following are possible ways to order requests:

—First encountered. This strategy will simply arrange the lists based on block
availability. That is, blocks that are just discovered by a node will be requested
after blocks the node has known about for a while. As an example, this might
correspond to all nodes proceeding in lockstep in terms of download progress.
The resulting low block diversity this causes in the system could lead to lower
performance.

—Random. This method will randomly order each list with the intent of im-
proving the block diversity in the system. However, there is a possibility of
requesting a block that many other nodes already have which does not help

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:24 • D. Kostić et al.

block diversity. As a result, this strategy might not significantly improve the
overall system performance.

—Rarest. The rarest technique is the first that looks at block distributions
among a node’s peers when ordering the lists. Each list will be ordered with
the least represented blocks appearing first. This strategy has no method for
breaking ties in terms of rarity, so it is possible that blocks quickly go from
being under represented to well represented when a set of nodes makes the
same deterministic choice.

—Rarest random. The final strategy we describe is an improvement over the
rarest approach in that it will choose uniformly at random from the blocks
that have the highest rarity. This strategy eliminates the problem of deter-
ministic choices leading to suboptimal conditions.

In order to decide which strategy worked the best, we implemented all four
in Bullet′. Most of the time, rarest random outperformed other schemes. We
present our findings in Section 5.9.

4.3.3.2 Flow Control. Although the rarest random request strategy enables
Bullet′ to request blocks from peers in a way that encourages block diversity, it
does not specify how many blocks a node should request from its peers at once.
This choice presents a tradeoff between control overhead (making requests)
and adaptivity. On one hand, a node could request one block at a time, not
requesting another one until the first arrived. Although stopping and waiting
would provide maximum insulation to changing network conditions, it would
also leave pipes underutilized due to the round trip time involved in making
the next request. At the other end of the spectrum is a strategy where a node
would request everything that it knew about from its peers as soon as it learned
about it. In this case, the control traffic is reduced and the node’s pipe from each
of its peers has a better chance of being full but this technique has major flaws
when network conditions change. If a peer suddenly slows down, the node will
find itself stuck waiting for a large number of blocks to come in at a slow rate.
We have experimented with canceling of blocks that arrive “slowly,” and found
that in many cases these blocks are “in-flight” or in the sender’s socket buffer,
making it difficult to effectively stop their retrieval without closing the TCP
connection.

As seen in Section 5.11, using a fixed number of outstanding blocks will not
perform well under a wide variety of conditions. To remedy this situation, Bullet′

employs a novel flow control algorithm that attempts to dynamically change the
maximum number of blocks a node is willing to have outstanding from each of
its peers. Our control algorithm is similar to XCP’s [Katabi et al. 2002] efficiency
controller, the feedback control loop for calculating the aggregate feedback for
all the flows traversing a link. XCP measures the difference in the rates of
incoming and outgoing traffic on a link, and computes the total number of bytes
by which the flows’ congestion windows should increase or decrease. XCP’s goal
is to maintain zero packets queued on the bottleneck link. For the particular
values of control parameters α = 0.4, β = 0.226, the control loop is stable for
any link bandwidth and delay [Katabi et al. 2002].

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:25

Fig. 7. Pseudocode for setting the maximum number of per-peer outstanding blocks.

We start with the original XCP formula and adapt it. Since we want to keep
each pipe full while not risking waiting for too much data in case the TCP con-
nection slows down, our goal is to maintain exactly one block in front of the
TCP socket buffer, for each peer. With each block it sends, sender measures and
reports two values to the receiver that runs the algorithm depicted in Figure 7
in the pseudocode. The first value is in front, corresponding to the number of
queued blocks in front of the socket buffer when the request for the particular
block arrives. The second value is wasted, and it can be either positive or nega-
tive. If it is negative, it corresponds to the time that is “wasted” and could have
been occupied by sending blocks. If it is positive, it represents the “service” time
this block has spent waiting in the queue. Since this time includes the time to
service each of the in front blocks, we take care not to double count the service
time in this case. To convert the wasted (service) time into units applicable to
the formula, we multiply it by the bandwidth measured at the receiver, and di-
vide by block size to derive the additional (reduced) number of blocks receiver
could have requested. Once we decide to change the number of outstanding
blocks, we mark a block request and do not make any adjustments until that
block arrives. This technique allows us to observe any changes caused by our
control algorithm before taking any additional action. Further, just matching
the rate at which the blocks are requested with the sending bandwidth in an
XCP manner would not saturate the TCP connection. Therefore, we take the
ceiling of the noninteger value for the desired number of outstanding blocks
whenever we increase this value.

Although Bullet′ knows how much data it should request and from whom,
a mechanism is still needed that specifies when the requests should be made.
Initially, the number of blocks outstanding for all peers starts at 3, so when
a node gains a sender it will request up to three blocks from the new peer.
Conceptually, this corresponds to the pipeline of one block arriving at the re-
ceiver, with one more in-flight, and the request for the third block reaching the
sender. Whenever a block is received, the node reevaluates the potential from
this peer and requests up to the new maximum outstanding.

4.3.3.3 Staying Up-To-Date. One small detail we have deferred until now
is how nodes become aware of what their peers have. Bullet′ nodes use a simple
bitmap structure to transmit diffs to their peers. These diffs are incremental,

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:26 • D. Kostić et al.

such that a node will only hear about a particular block from a peer once.
This approach helps to minimize wasted bandwidth and decouples the size of
the diff from the size of the file being distributed. Currently, a diff may be
transmitted from node A to B in one of two circumstances—either because B
has nothing requested of A, or because B specifically asked for a diff to be sent.
The latter would occur when B is about to finish requesting all of the blocks A
currently has. An interesting effect of this mechanism is that diff sending is
automatically self clocking; there are no fixed timers or intervals where diffs
are sent at a specific rate. Bullet′ automatically adjusts to the data consumption
rates of each individual peer.

4.4 Sending Strategy

4.4.1 Bullet. Overall, the dissemination over the Bullet mesh is a combi-
nation of a system-wide push over the underlined tree, and pull over the peering
links. In this section we present the details of the sending strategy that is used
to push the data. The overarching goal of this strategy is to maximize the band-
width achieved by each of the receivers in a node’s subtree by increasing the
ease by which nodes can find disjoint data not provided by parents.

We operate on the premise that the main challenge in recovering lost data
packets transmitted over an overlay distribution tree lies in finding the peer
node housing the data to recover. Many systems take a hierarchical approach to
this problem, propagating repair requests up the distribution tree until the re-
quest can be satisfied. This ultimately leads to scalability issues at higher levels
in the hierarchy particularly when overlay links are bandwidth-constrained.

On the other hand, Bullet attempts to recover lost data from any nondescen-
dant node, not just ancestors, thereby increasing overall system scalability.
In traditional overlay distribution trees, packets are lost by the transmission
transport and/or the network. Nodes attempt to stream data as fast as pos-
sible to each child and have essentially no control over which portions of
the data stream are dropped by the transport or network. As a result, the
streaming subsystem has no control over how many nodes in the system
will ultimately receive a particular portion of the data. If few nodes receive
a particular range of packets, recovering these pieces of data becomes more
difficult, requiring increased communication costs, and leading to scalability
problems.

In contrast, Bullet nodes are aware of the bandwidth achievable to each of
its children using the underlying transport. If a child is unable to receive the
streaming rate that the parent receives, the parent consciously decides which
portion of the data stream to forward to the constrained child. In addition, be-
cause nodes recover data from participants chosen uniformly at random from
the set of nondescendants, it is advantageous to make each transmitted packet
recoverable from approximately the same number of participant nodes. That
is, given a randomly chosen subset of peer nodes, it is with the same proba-
bility that each node has a particular data packet. While not explicitly proven
here, we believe that this approach maximizes the probability that a lost data
packet can be recovered, regardless of which packet is lost. To this end, Bullet

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:27

distributes incoming packets among one or more children in hopes that the
expected number of nodes receiving each packet is approximately the same.

A node p maintains for each child, i, a limiting and sending factor, l fi and
sfi. These factors determine the proportion of p’s received data rate that it will
forward to each child. The sending factor sfi is the portion of the parent stream
(rate) that each child should “own” based on the number of descendants the child
has. The more descendants a child has, the larger the portion of received data
it should own. The limiting factor l fi represents the proportion of the parent
rate beyond the sending factor that each child can handle. For example, a child
with one descendant, but high bandwidth, would have a low sending factor, but
a very high limiting factor. Though the child is responsible for owning a small
portion of the received data, it actually can receive a large portion of it.

Because RanSub collects descendant counts di for each child i, Bullet simply
makes a call into RanSub when sending data to determine the current sending
factors of its children. For each child i out of k total, we set the sending factor
to be

sfi = di∑k
j=1 d j

.

In addition, a node tracks the data successfully transmitted via the transport.
That is, Bullet data transport sockets are nonblocking; successful transmissions
are send attempts that are accepted by the nonblocking transport. If the trans-
port would block on a send (i.e., transmission of the packet would exceed the
TCP-friendly fair share of network resources), the send fails and is counted as
an unsuccessful send attempt. When a data packet is received by a parent, it
calculates the proportion of the total data stream that has been sent to each
child, thus far, in this epoch. It then assigns ownership of the current packet
to the child with sending proportion farthest away from its sfi as illustrated in
Figure 8.

Having chosen the target of a particular packet, the parent attempts to for-
ward the packet to the child. If the send is not successful, the node must find
an alternate child to own the packet. This occurs when a child’s bandwidth
is not adequate to fulfill its responsibilities based on its descendants (sfi). To
compensate, the node attempts to deterministically find a child that can own
the packet (as evidenced by its transport accepting the packet). The net result
is that children with more than adequate bandwidth will own more of their
share of packets than those with inadequate bandwidth. In the event that no
child can accept a packet, it must be dropped, corresponding to the case where
the sum of all children bandwidths is inadequate to serve the received stream.
While making data more difficult to recover, Bullet still allows for recovery of
such data to its children. The sending node will cache the data packet and serve
it to its requesting peers. This process allows its children to potentially recover
the packet from one of their own peers, to whom additional bandwidth may be
available.

Once a packet has been successfully sent to the owning child, the node at-
tempts to send the packet to all other children depending on the limiting factors
l fi. For each child i, a node attempts to forward the packet deterministically

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:28 • D. Kostić et al.

Fig. 8. Pseudocode for Bullet’s disjoint data send routine.

if the packet’s sequence modulo 1/l fi is zero. Essentially, this identifies which
l fi fraction of packets of the received data stream should be forwarded to each
child to make use of the available bandwidth to each. If the packet transmission
is successful, l fi is increased such that one more packet is to be sent per epoch.
If the transmission fails, l fi is decreased by the same amount. This allows
children limiting factors to be continuously adjusted in response to changing
network conditions.

It is important to realize that by maintaining limiting factors, we are essen-
tially using feedback from children (by observing transport behavior) to deter-
mine the best data to stop sending during times when a child cannot handle the
entire parent stream. In one extreme, if the sum of children bandwidths is not
enough to receive the entire parent stream, each child will receive a completely
disjoint data stream of packets it owns. In the other extreme, if each child has

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:29

ample bandwidth, it will receive the entire parent stream as each l fi would
settle on 1.0. In the general case, our owning strategy attempts to make data
disjoint among children subtrees with the guiding premise that, as much as
possible, the expected number of nodes receiving a packet is the same across
all packets.

4.4.2 Discussion: Duplicate Data. In this section we describe our efforts in
minimizing duplicate data transmission at various points in the overlay.

4.4.2.1 Potentially Duplicate Data from the Parent in the Underlying Tree.
We believed there was too much overhead created by Bullet’s sending strategy.
To eliminate potentially duplicate data from the parent in the underlying tree
during file distribution, we closely examined the Bullet dissemination model
that consists of the low-latency, push-based dissemination over the underly-
ing tree, and the pull-based dissemination over the peering links that form
the mesh. Pushing data over a tree requires coordination between each child
and a parent to make sure that duplicates were minimized (otherwise, a node
might receive a pushed block that it is currently retrieving from a peer). This
coordination requires transmission of control messages and digests that form
pure control overhead. In addition, we argued that a file distribution mecha-
nism did not have to be optimized for the delivery latency of each block, thereby
diminishing the need for the low latency provided by the tree dissemination.
Taking into consideration these and other issues (see Section 2.1), we decided
to stop the push-based data from being disseminated further from the source’s
children in the underlying tree.

4.4.2.2 Duplicate Data Sent by the Source. Each Bullet parent tries to send
blocks optimistically to probe how much “extra data” it can send to each of its
children, where “extra data” refers to duplicate blocks that are sent to more than
one child (Section 4.4.1). We realized that we could not achieve near-optimal
performance if we allowed the source to send extraneous data over its outbound
access link. Therefore, we switched to a source strategy that sends blocks only
once, in a round-robin fashion and according to available bandwidth, among
the source’s children.

4.4.3 Bullet ′. As mentioned previously, Bullet′ uses a hybrid push/pull ap-
proach for data distribution where the source behaves differently from everyone
else. This decision stems from the desire to minimize the overall file distribu-
tion time. Specifically, the source takes a rather simple approach: it sends a
block to each of its RanSub children iteratively until the entire file has been
sent. If a block cannot be sent to one child (because the pipe to it is already
full), the source will try the next child in a round robin fashion until a suitable
recipient is found. In this manner, the source never wastes bandwidth forcing
a block on a node that is not ready to accept it. Once the source makes each of
the file blocks available to the system, it will advertise itself in RanSub so that
arbitrary nodes can benefit from having a peer with all of the file blocks. This
mechanism takes care of the case when a source’s child dies after receiving a
block from the source, and before it manages to transmit it to any other node.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:30 • D. Kostić et al.

From the perspective of nonsource nodes, determining the order in which
to send requested blocks is equally as simple. Since Bullet′ dynamically deter-
mines the number of outstanding requests, nodes should always have approxi-
mately one outstanding request at the application level on any peer at any one
time. As a result, the sender can simply serve requests in FIFO order since
there is not much of a choice to make among such few blocks. Note that this
approach would not be optimal for all systems, but since Bullet′ dynamically
adjusts the number of requests to have outstanding for each peer, it works well.

5. EVALUATION

In this section, we present the evaluation of Bullet and Bullet′ as well as the
competing systems. Except BitTorrent, all of the evaluated systems are imple-
mented in the MACEDON common development infrastructure. As a result, we
believe that our comparisons qualitatively show algorithmic differences rather
than implementation intricacies.

We have evaluated the performance of Bullet and Bullet′ in real Internet en-
vironments as well as the ModelNet [Vahdat et al. 2002] IP emulation frame-
work. While the bulk of our experiments used ModelNet, we also report on
our experience with Bullet′ on the PlanetLab Internet testbed [Peterson et al.
2002].

Our evaluation has two major parts. First, we evaluate the streaming perfor-
mance of Bullet versus streaming over a bandwidth-optimized overlay tree. We
have implemented a number of underlying overlay network trees upon which
Bullet can execute. Because Bullet performs well over a randomly created over-
lay tree, we present results with Bullet running over such a tree compared
against an offline greedy bottleneck bandwidth tree algorithm using global
topological information described in Section 5.3. We also present an evaluation
of Bullet versus epidemic algorithms, and demonstrate Bullet’s performance
under failure.

In the second part of our evaluation, we use Bullet for file distribution.
We also show Bullet′ performance results, and compare both of our systems
with SplitStream [Castro et al. 2003], and BitTorrent [Cohen 2003]. We use a
parametrized version of Bullet′ to illustrate the benefits of our adaptive mech-
anisms for peering strategy and flow control.

5.1 Summary

In this section we provide a summary of the key features in Bullet, Bullet′,
and state-of-the-art systems for high-bandwidth overlay data dissemination.
We created Bullet with the goal of maximizing the bandwidth delivered to each
recipient. After demonstrating its superior performance on a large scale relative
to overlay trees and epidemic approaches, we turned our attention to the large
file distribution problem. We started with Bullet and realized its shortcomings
in this role. Subsequently, we performed a detailed analysis of the design space,
incorporated the lessons from our extensive performance evaluations and a
number of systems developed contemporaneously to our own, creating Bullet′.
We use Table I to highlight the major features of these systems. We believe that

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:31

Table I. Summary of Key Properties of Bullet, Bullet′, and State-of-the-Art High-Bandwidth

Overlay Data Dissemination Systems

System Overlay

property trees SplitStream BitTorrent Bullet Bullet′

Push or pull Push Push Pull Hybrid Hybrid

Encoded or

unencoded

Either Encoded Unencoded Either (requires

encoding for file

distribution)

Unencoded

Peering

selection

None (all

bandwidth

comes

from the

parent)

Pastry/Scribe

selected

plus spare

bandwidth

tree

traversal

Centralized

(Tracker)

Scalable,

decentralized,

informed

Scalable,

decentral-

ized,

informed

Peer set size Fixed Fixed Fixed Fixed Dynamic

Topology

adaptation

Yes No Implicit

(tit-for-tat),

prefers

nodes with

better

bandwidth

Yes Yes

Ordering of

requests

None (push-

based)

None (push-

based)

Rarest

random

Implicit (sender

picks at

random)

Rarest

random

(same as

BitTorrent)

Flow control

of

requests

Implicit (Du-

plicates

created)

None (push-

based)

Fixed none Dynamic

sizing

Source

sending

strategy

Attempts to

send same

data to

each child

Disjoint Source peers

pull data,

duplicates

possible

According to

available

bandwidth,

with duplicates

According to

available

bandwidth,

no

duplicates

Nonsource

sending

strategy

Attempts to

send the

same data

to each

child

Attempts to

send the

same data

to each child

FIFO for

receiver

requests

Push ac. to avail.

bw, no

duplicates;

random

selection from

digests for

pulled data

FIFO for

receiver

requests,

targets 1

request to

each

receiver

Fairness None bandwidth-

contribution

based

Tit-for-tat

(TFT)

None None

the choices we made in Bullet′ can be viewed as preferred choices when building
a single-source large file distribution mechanism that does not use encoding and
does not enforce fairness among a set of receivers. We now discuss in more detail
each of the dimensions presented in Table I.

—Push or pull. Our evaluations show that Bullet′’s hybrid push/pull data dis-
semination mechanism is a good choice for high-bandwidth data dissemina-
tion. In particular, the choice of performing push from the source is supe-
rior to BitTorrent’s strategy of having receivers pull data from the source

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:32 • D. Kostić et al.

because Bullet′ completely avoids duplicates. The per-object delivery latency
in SplitStream is likely to be superior to Bullet′ in cases when the network
links are not being heavily utilized or under low congestion. On the other
hand, when the socket buffer queues of a congestion-friendly transport pro-
tocol start filling up due to packet losses in the network, SplitStream’s data
object delivery latencies might start approaching Bullet’s per-object laten-
cies. We discuss general merits of push and pull in Section 2.1.

—Peering selection. A system that scales with the large number of receivers
must include a scalable peer selection mechanism. Bullet′ accomplishes this
by using RanSub, while SplitStream uses Pastry, a scalable p2p routing sub-
strate, and Scribe, a mechanism for constructing overlay trees on top of Pas-
try. BitTorent, on the other hand, relies on a centralized tracker, which, in
addition to being unscalable, represents a central point of failure.

—Peer set size. We believe that Bullet′’s ability to dynamically set its peer set
size is important for filling each receiver’s pipe under dynamic network con-
ditions. We quantify this claim using a parametrized version of Bullet′ in
Section 5.10.

—Topology adaptation. To match the conditions of the underlying network, an
overlay data dissemination mechanism must be agile in adapting its topol-
ogy. We back this claim in Section 5.8 by demonstrating superior Bullet′

performance relative to state-of-the-art systems.

—Ordering of requests. Although it is a strategy put into action via local, per-
node decisions, request ordering is vital in ensuring diversity of data in the
system so that receivers can help one another. Our rarest random policy for
ordering of requests is similar to that employed by BitTorrent. The evaluation
in Section 5.9 quantifies the claims made in Section 2.4.

—Flow control of requests. Controlling the number of outstanding requests (as
is the case in Bullet′) over peering links with varying available bandwidth
and latency is vital for good performance. Having motivated the problem in
Section 2.4, we corroborate this claim in Section 5.11.

—Sending strategies. Bullet′’s superior performance (Section 5.8) is in part
due to our careful choices to avoid transmission of duplicates. This is par-
ticularly important when bandwidth is scarce. We discuss the possible ap-
proaches in Section 2.5 and our work on reducing duplicates in Bullet in
Section 4.4.2.

—Fairness. We made a decision to pursue a performance-first approach
(Section 2.6) with Bullet′. We acknowledge that a system that enforces fair-
ness, for example by using BitTorrent’s tit-for-tat mechanism, might be more
appropriate in certain scenarios. Adding this functionality to Bullet′ would
be straightforward.

5.2 Experimental Setup

5.2.1 Streaming. Our streaming ModelNet experiments made use of 50
2-GHz Pentium 4’s running Linux 2.4.20 and interconnected with 100-Mb/s
and 1-Gb/s Ethernet switches. For the majority of these experiments, we

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:33

Table II. Bandwidth Ranges for Link Types Used in Our Topologies Expressed in kilobits/s

Topology classification Client-Stub Stub-Stub Transit-Stub Transit-Transit

Low bandwidth 300–600 500–1000 1000–2000 2000–4000

Medium bandwidth 800–2800 1000–4000 1000–4000 5000–10,000

High bandwidth 1600–5600 2000–8000 2000–8000 10,000–20,000

multiplexed 1000 instances (overlay participants) of our overlay applications
across the 50 Linux nodes (20 per machine). In ModelNet, packet transmissions
are routed through emulators responsible for accurately emulating the hop-by-
hop delay, bandwidth, and congestion of a network topology. In our evaluations,
we used four 1.4-GHz Pentium III’s running FreeBSD-4.7 as emulators. This
platform supports approximately 2-3 Gb/s of aggregate simultaneous communi-
cation among end hosts. For most of our ModelNet experiments, we use 20,000-
node INET-generated topologies [Chang et al. 2002]. We randomly assign our
participant nodes to act as clients connected to 1◦ stub nodes in the topology.
We randomly select one of these participants to act as the source of the data
stream.

Propagation delays in the network topology are calculated based on the rela-
tive placement of the network nodes in the plane by INET. Based on the classi-
fication in Calvert et al. [1997], we classify network links as being Client-Stub,
Stub-Stub, Transit-Stub, and Transit-Transit depending on their location in
the network. We restrict topological bandwidth by setting the bandwidth for
each link depending on its type. Each type of link has an associated bandwidth
range from which the bandwidth is chosen uniformly at random. By changing
these ranges, we vary bandwidth constraints in our topologies. For our exper-
iments, we created three different ranges corresponding to low, medium, and
high bandwidths relative to our typical streaming rates of 600–1000 kb/s as
specified in Table II. While the presented ModelNet results are restricted to
two topologies with varying bandwidth constraints, the results of experiments
with additional topologies all show qualitatively similar behavior.

We do not implement any particular coding scheme for our experiments.
Rather, we assume that either each sequence number directly specifies a par-
ticular data block and the block offset for each packet, or we are distributing
data within the same block for “digital-fountain”-type erasure Codes, for exam-
ple, when distributing a file.

5.2.2 File Distribution. Our file distribution ModelNet experiments made
use of 25 2.0- and 2.8-Ghz Pentium 4s running Xeno-Linux 2.4.27 and intercon-
nected by 100-Mb/s and 1-Gb/s Ethernet switches. In the experiments presented
here, we multiplexed 100 logical end nodes running our download applications
across the 25 Linux nodes (four per machine). ModelNet routes packets from
the end nodes through an emulator responsible for accurately emulating the
hop-by-hop delay, bandwidth, and congestion of a given network topology; a
1.4-GHz Pentium III running FreeBSD-4.7 served as the emulator for these
experiments.

All of our experiments were run on a fully interconnected mesh topol-
ogy, where each pair of overlay participants were directly connected. While

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:34 • D. Kostić et al.

admittedly not representative of actual Internet topologies, it allowed us max-
imum flexibility to affect the bandwidth and loss rate between any two peers.
The inbound and outbound access links of each node are set to 6 Mb/s, while
the nominal bandwidth on the core links is 2 Mb/s. In an attempt to model
the wide-area environment (PingER Site-by-month History Table; go online
to http://www-iepm.slac.stanford.edu/pinger/tools/table.html), we con-
figured ModelNet to randomly drop packets on the core links with probabil-
ity ranging from 0 to 3%. The loss rate on each link was chosen uniformly at
random and fixed for the duration of an experiment. To approximate the laten-
cies in the Internet [Dabek et al. 2004; PingER Site-by-month History Table;
go online to http://www-iepm.slac.stanford.edu/pinger/tools/table.html],
we set the propagation delay on the core links uniformly at random between 5
and 200 ms, while the access links have a 1-ms delay.

As described most of the following sections, we conducted identical experi-
ments in two scenarios: a static-bandwidth case and a variable-bandwidth case.
Our bandwidth-change scenario was designed to stress the peering strategies
of the systems under evaluation; it models changes in the network bandwidth
that correspond to correlated and cumulative decreases in bandwidth from a
large set of sources from any vantage point. To effect these changes, we de-
creased the bandwidth in the core links with a period of 20 s. At the beginning
of each period, we chose 50% of the overlay participants uniformly at random.
For each participant selected, we then randomly chose 50% of the other over-
lay participants and decreased the bandwidth on the core links from those
nodes to 50% of the current value, without affecting the links in the reverse
direction. The changes we made are cumulative; that is, it was possible for an
unlucky node pair to have 25% of the original bandwidth after two iterations.
We did not alter the physical link loss rates that were chosen during topology
generation.

5.2.3 Large-Scale Bullet′ Performance Under Node Churn and Flashcrowds.
Our large-scale ModelNet [Vahdat et al. 2002] Bullet′ experiments under node
churn and flash crowds scenarios made use of 27 dual 3.4-GHz Pentium 4 Xeons
with 2 GB RAM running Linux 2.6.17 interconnected by a full-rate 1-Gb/s Eth-
ernet switch. We multiplexed 250 logical end peers running our applications
across the 27 Linux machines (slightly over four instances on average per pro-
cessor); three 3.4-GHz Pentium 4 Xeons running FreeBSD 4.9 served as the
emulator for these experiments.

We used a 5000-node INET [Chang et al. 2002] topology that we further an-
notated with bandwidth capacities for each link. The INET topology preserves
the power law distribution of node degrees in the Internet. We kept the laten-
cies generated by the topology generator; the average network RTT was 130 ms.
We randomly assigned participants to act as clients connected to 1-degree stub
nodes in the topology. We set transit-transit links links to be 150 Mb/s, while we
set access links to 6-Mb/s inbound/outbound bandwidth. This setup provided
an environment where the access links were constrained, and the network core
was well provisioned. To emulate the effects of cross traffic, we instructed Mod-
elNet to drop packets on client-stub (access) and transit-transit links at random

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:35

with a probability chosen uniformly at random from [0, 0.003] and [0, 0.005],
respectively, for each link separately.

5.3 Offline Bottleneck Bandwidth Tree

One of our goals is to determine Bullet’s performance relative to the best pos-
sible bandwidth-optimized tree for a given network topology. This would allow
us to quantify the possible improvements of an overlay mesh constructed using
Bullet relative to the best possible tree. While we have not yet proven this, we
believe that this problem is NP-hard. Thus, in this section we present a simple
greedy offline algorithm to determine the connectivity of a tree likely to deliver
a high level of bandwidth. In practice, we are not aware of any scalable online
algorithms that are able to deliver the bandwidth of an offline algorithm. At
the same time, trees constructed by our algorithm tend to be “long and skinny,”
making them less resilient to failures and inappropriate for delay sensitive
applications (such as multimedia streaming). In addition to any performance
comparisons, a Bullet mesh has much lower depth than the bottleneck tree and
is more resilient to failure, as discussed in Section 5.7.

Specifically, we consider the following problem: given complete knowledge of
the topology (individual link latencies, bandwidth, and packet loss rates), what
is the overlay tree that will deliver the highest bandwidth to a set of predeter-
mined overlay nodes? We assume that the throughput of the slowest overlay
link (the bottleneck link) determines the throughput of the entire tree. We are,
therefore, trying to find the directed overlay tree with the maximum bottleneck
link. Accordingly, we refer to this problem as the overlay maximum bottleneck
tree (OMBT). In a simplified case, assuming that congestion only exists on ac-
cess links and there are no lossy links, there exists an optimal algorithm [Kim
et al. 2002]. In the more general case of contention on any physical link, and
when the system is allowed to choose the routing path between the two end-
points, this problem is known to be NP-hard [Cohen and Kaempfer 2001], even
in the absence of link losses. For the purposes of this article, our goal is to de-
termine a “good” overlay streaming tree that provides each overlay participant
with substantial bandwidth, while avoiding overlay links with high end-to-end
loss rates.

We make the following assumptions:

(1) The routing path between any two overlay participants is fixed. This closely
models the existing overlay network model with IP for unicast routing.

(2) The overlay tree will use TCP-friendly unicast connections to transfer data
point-to-point.

(3) In the absence of other flows, we can estimate the throughput of a TCP-
friendly flow using a steady-state formula [Padhye et al. 1998].

(4) When several (n) flows share the same bottleneck link, each flow can achieve
throughput of at most c

n , where c is the physical capacity of the link.

Given these assumptions, we concentrate on estimating the throughput
available between two participants in the overlay. We start by calculating the
throughput using the steady-state formula. We then “route” the flow in the

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:36 • D. Kostić et al.

network, and consider the physical links one at a time. On each physical link,
we compute the fair-share for each of the competing flows. The throughput of
an overlay link is then approximated by the minimum of the fair-shares along
the routing path, and the formula rate. If some flow does not require the same
share of the bottleneck link as other competing flows (i.e., its throughput might
be limited by losses elsewhere in the network), then the other flows might end
up with a greater share than the one we compute. We do not account for this,
as the major goal of this estimate is simply to avoid lossy and highly congested
physical links.

More formally, we define the problem as follows:

Overlay Maximum Bottleneck Tree (OMBT).

Given a physical network represented as a graph G = (V , E), set of overlay
participants P ⊂ V , source node (s ∈ P), bandwidth B : E → R+, loss rate L :
E → [0, 1], propagation delay D : E → R+ of each link, set of possible overlay
links O = {(v, w) | v, w ∈ P, v �= w}, and routing table RT : O × E → {0, 1},
find the overlay tree T = {o | o ∈ O} (|T | = |P | − 1, ∀v ∈ P there exists a path
ov = s � v) that maximizes

min
o|o∈T

(
min

(
f (o), min

e|e∈o

b(e)

|{p | p ∈ T, e ∈ p}|
))

,

where f (o) is the TCP steady-state sending rate, computed from round-trip
time d (o) = ∑

e∈o d (e) + ∑
e∈o′ d (e) (given overlay link o = (v, w), o′ = (w, v)),

and loss rate l (o) = 1 − ∏
e∈o (1 − l (e)). We write e ∈ o to express that link e is

included in the o’s routing path (RT (o, e) = 1).

Assuming that we can estimate the throughput of a flow, we proceed to for-
mulate a greedy OMBT algorithm. This algorithm is nonoptimal, but a similar
approach was found to perform well [Cohen and Kaempfer 2001].

Our algorithm is similar to the Widest Path Heuristic (WPH) [Cohen and
Kaempfer 2001], and more generally to Prim’s MST algorithm [Prim 1957].
During its execution, we maintain the set of nodes already in the tree, and
the set of remaining nodes. To grow the tree, we consider all the overlay links
leading from the nodes in the tree to the remaining nodes. We greedily pick
the node with the highest throughput overlay link. Using this overlay link
might cause us to route traffic over physical links traversed by some other tree
flows. Since we do not reexamine the throughput of nodes that are already in
the tree, they might end up being connected to the tree with slower overlay
links than initially estimated. However, by attaching the node with the highest
residual bandwidth at every step, we hope to lessen the effects of after-the-fact
physical link sharing. With the synthetic topologies we use for our emulation
environment, we have not found this inaccuracy to severely impact the quality
of the tree.

5.4 Streaming over Bullet Versus Bandwidth-Optimized Tree

We have evaluated Bullet under a number of bandwidth constraints to de-
termine how Bullet performs relative to the available bandwidth of the

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:37

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400

B
a
n
d
w

id
th

 (
K

b
p
s
)

Time (s)

Bullet - High Bandwidth
Bottleneck tree - High Bandwidth

Bullet - Medium Bandwidth
Bottleneck tree - Medium Bandwidth

Bullet - Low Bandwidth
Bottleneck tree - Low Bandwidth

Fig. 9. Achieved bandwidth for Bullet and bottleneck tree over time for high-, medium-, and low-

bandwidth topologies.

underlying topology. Table II describes representative bandwidth settings for
our streaming rate of 600 kb/s. The intent of these settings is to show a scenario
where more than enough bandwidth is available to achieve a target rate even
with traditional tree streaming, an example of where it is slightly not sufficient,
and one in which the available bandwidth is quite restricted. Figure 9 shows
achieved bandwidths for Bullet and the bottleneck bandwidth tree over time
generated from topologies with bandwidths in each range. The average Bullet
per-node control overhead is approximately 30 kb/s. By tracing certain packets
as they move through the system, we are able to acquire link stress (number of
times the same data traverses a physical link) estimates of our system Though
the link stress can be different for each packet since each can take a differ-
ent path through the overlay mesh, we average link stress due to each traced
packet. For this experiment, Bullet has an average link stress of approximately
1.5 with an absolute maximum link stress of 22.

In all of our experiments, Bullet outperforms the bottleneck bandwidth tree
by a factor of up to 100%, depending on how much bandwidth is constrained
in the underlying topology. In one extreme, having more than ample band-
width, Bullet and the bottleneck bandwidth tree are both able to stream at
the requested rate (600 kb/s in our example). In the other extreme, heavily
constrained topologies allow Bullet to achieve twice the bandwidth achievable
via the bottleneck bandwidth tree. For all other topologies, Bullet’s benefits
are somewhere in between. In our example, Bullet running over our medium-
constrained bandwidth topology is able to outperform the bottleneck bandwidth
tree by a factor of 25%. Further, we stress that we believe it would be extremely
difficult for any online tree-based algorithm to exceed the bandwidth achiev-
able by our offline bottleneck algorithm that makes use of global topological
information. For instance, we built a simple bandwidth optimizing overlay tree
construction based on Overcast [Jannotti et al. 2000]. The resulting dynami-
cally constructed trees never achieved more than 75% of the bandwidth of our
own offline algorithm.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:38 • D. Kostić et al.

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400

B
a
n
d
w

id
th

 (
K

b
p
s
)

Time (s)

Bullet - High Bandwidth
Bullet - Medium Bandwidth

Bottleneck tree - High Bandwidth
Bottleneck tree - Medium Bandwidth

Bullet - Low Bandwidth
Bottleneck tree - Low Bandwidth

Fig. 10. Achieved bandwidths for Bullet and bottleneck bandwidth tree over a lossy network

topology.

5.5 Streaming over Bullet Versus Bandwidth-Optimized Tree on a Lossy Network

To evaluate Bullet’s performance under more lossy network conditions, we have
modified our 20,000-node topologies used in our previous experiments to include
random packet losses. ModelNet allows the specification of a packet loss rate in
the description of a network link. Our goal by modifying these loss rates is to
simulate queuing behavior when the network is under load due to background
network traffic.

To effect this behavior, we first modify all nontransit links in each topology
to have a packet loss rate chosen uniformly random from [0, 0.003] resulting in
a maximum loss rate of 0.3%. Transit links are likewise modified, but with a
maximum loss rate of 0.1%. Similarly to the approach in Padmanabhan et al.
[2003a], we randomly designated 5% of the links in the topologies as over-
loaded and set their loss rates uniformly random from [0.05, 0.1] resulting in
a maximum packet loss rate of 10%. Figure 10 shows achieved bandwidths for
streaming over Bullet and using our greedy offline bottleneck bandwidth tree.
Because losses adversely affect the bandwidth achievable over TCP-friendly
transport and since bandwidths are strictly monotonically decreasing over a
streaming tree, tree-based algorithms perform considerably worse than Bul-
let when used on a lossy network. In all cases, Bullet delivers at least twice
as much bandwidth than the bottleneck bandwidth tree. Additionally, losses
in the low bandwidth topology essentially keep the bottleneck bandwidth tree
from delivering any data, an artifact that is avoided by Bullet.

5.6 Streaming over Bullet Versus Epidemic Approaches

In this section, we explore how Bullet compares to data dissemination ap-
proaches that use some form of epidemic routing [Demers et al. 1987]. We
implemented a form of “gossiping,” where a node forwards nonduplicate pack-
ets to a randomly chosen number of nodes in its local view. This technique does
not use a tree for dissemination, and is similar to lpbcast [Eugster et al. 2001]
(recently improved to incorporate retrieval of data objects [Eugster et al. 2003]).

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:39

0

500

1000

1500

2000

0 50 100 150 200 250 300

B
a
n
d
w

id
th

 (
K

b
p
s
)

Time (s)

Push gossiping raw
Streaming w/AE raw

Bullet raw
Bullet useful

Push gossiping useful
Streaming w/AE useful

Fig. 11. Achieved bandwidth over time for Bullet and epidemic approaches.

We do not disseminate packets every T seconds; instead we forward them as
soon as they arrive.

We also implemented a pbcast-like [Birman et al. 1999] approach for retriev-
ing data missing from a data distribution tree. The idea here is that nodes are
expected to obtain most of their data from their parent. Nodes then attempt
to retrieve any missing data items through gossiping with random peers. In-
stead of using gossiping with a fixed number of rounds for each packet, we use
antientropy with a FIFO Bloom filter to attempt to locate peers that hold any
locally missing data items.

To make our evaluation conservative, we assume that nodes employing gos-
sip and antientropy recovery are able to maintain full group membership. While
this might be difficult in practice, we assume that RanSub [Kostić et al. 2003a]
could also be applied to these ideas, specifically in the case of antientropy recov-
ery that employs an underlying tree. Further, we also allow both techniques to
reuse other aspects of our implementation: Bloom filters, TFRC transport, etc.
To reduce the number of duplicate packets, we use fewer peers in each round
(five) than Bullet (10). For our configuration, we experimentally found that five
peers results in the best performance with the lowest overhead. In our experi-
ments, increasing the number of peers did not improve the average bandwidth
achieved throughout the system. To allow TFRC enough time to ramp up to the
appropriate TCP-friendly sending rate, we set the epoch length for antientropy
recovery to 20 s.

For these experiments, we used a 5000-node INET topology with no ex-
plicit physical link losses. We set link bandwidths according to the medium
range from Table II, and randomly assigned 100 overlay participants. The ran-
domly chosen root either streamed at 900 kb/s (over a random tree for Bullet
and greedy bottleneck tree for antientropy recovery), or sent packets at that
rate to randomly chosen nodes for gossiping. Figure 11 shows the resulting
bandwidth over time achieved by Bullet and the two epidemic approaches. As
expected, Bullet came close to providing the target bandwidth to all partici-
pants, achieving approximately 60% more then gossiping and streaming with

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:40 • D. Kostić et al.

antientropy. The two epidemic techniques send an excessive number of dupli-
cates, effectively reducing the useful bandwidth provided to each node. More
importantly, both approaches assign equal significance to other peers, regard-
less of the available bandwidth and the similarity ratio. Bullet, on the other
hand, establishes long-term connections with peers that provide good band-
width and disjoint content, and avoids most of the duplicates by requesting
disjoint data from each node’s peers.

5.7 Bullet Streaming Performance Under Failure

In this section, we discuss Bullet’s behavior in the face of node failure. In con-
trast to streaming distribution trees that must quickly detect and make tree
transformations to overcome failure, Bullet’s failure resilience rests on its abil-
ity to maintain a higher level of achieved bandwidth by virtue of perpendicular
(peer) streaming. While all nodes under a failed node in a distribution tree will
experience a temporary disruption in service, Bullet nodes are able compensate
for this by receiving data from peers throughout the outage.

Because Bullet, and, more importantly, RanSub makes use of an underly-
ing tree overlay, part of Bullet’s failure recovery properties will depend on the
failure recovery behavior of the underlying tree. For the purposes of this dis-
cussion, we simply assume the worst-case scenario where an underlying tree
has no failure recovery. In our failure experiments, we fail one of root’s children
(with 110 of the total 1000 nodes as descendants) 250 s after data streaming is
started. By failing one of root’s children, we are able to show Bullet’s worst-case
performance under a single node failure.

In our first scenario, we disable failure detection in RanSub so that after a
failure occurs, Bullet nodes request data only from their current peers. That
is, at this point, RanSub stops functioning and no new peer relationships are
created for the remainder of the run. While the average achieved rate drops
from 500 kb/s to 350 kb/s, most nodes (including the descendants of the failed
root child) are able to recover a large portion of the data rate.

Next, we enable RanSub failure detection that recognizes a node’s failure
when a RanSub epoch has lasted longer than the predetermined maximum
(5 s for this test). In this case, the root simply initiates the next distribute phase
upon RanSub timeout. The net result is that nodes that are not descendants
of the failed node will continue to receive updated random subsets allowing
them to peer with appropriate nodes reflecting the new network conditions. As
shown in Figure 12, the failure causes a negligible disruption in performance.
With RanSub failure detection enabled, nodes quickly learn of other nodes from
which to receive data. Once such recovery completes, the descendants of the
failed node use their already established peer relationships to compensate for
their ancestor’s failure. Hence, because Bullet is an overlay mesh, its reliability
characteristics far exceed that of typical overlay distribution trees.

5.8 Overall File Download Performance

We begin by studying how Bullet and Bullet′ perform for file distribution, us-
ing the existing best-of-breed systems as comparison points. For reference,

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:41

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

B
a
n
d
w

id
th

 (
K

b
p
s
)

Time (s)

Bandwidth received
Useful total

From parent

Fig. 12. Bullet’s bandwidth over time with a worst-case node failure and RanSub recovery

enabled.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400 450

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s

download time(s)

Physical Link Speed Possible
MACEDON TCP feasible + startup

BulletPrime
Bullet

BitTorrent
MACEDON SplitStream MS

Fig. 13. Performance comparison for a 100-MB file download under random network packet

losses.

we also calculate the best achievable performance given the overhead of our
underlying transport protocols. In our experiments, all nodes start at t = 0.
Figure 13 plots the results of downloading a 100-MB file on our ModelNet
topology using a number of different systems. The graph plots the cumula-
tive distribution function of node completion times for four experimental runs
and two calculations. Starting at the left, we plot download times that are
optimal with respect to access link bandwidth in the absence of any protocol
overhead. We then estimate the best possible performance of a system built
using MACEDON on top of TCP, accounting for the inherent delay required
for nodes to achieve maximum download rate. The remaining four lines show
the performance of Bullet′ running in the unencoded mode, Bullet, and Bit-
Torrent, our MACEDON SplitStream implementation, in roughly that order.
Bullet′ clearly outperforms all other schemes by approximately 25%. The slow-
est Bullet′ receiver finishes downloading 37% faster than for other systems.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:42 • D. Kostić et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000 1100

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s

download time(s)

BulletPrime
Bullet

BitTorrent
MACEDON SplitStream MS

Fig. 14. Performance comparison for a 100-MB file download under synthetic bandwidth changes

and random network packet losses.

The majority of BitTorrent nodes finish at an almost identical time because the
source had difficulty sending data at a high rate in this topology; we attribute
this to the BitTorrent’s design of having a fixed number of receivers pulling data
from the source with a constant number of outstanding blocks. Bullet′’s perfor-
mance is even better in the dynamic scenario (faster by 32–70%), shown in
Figure 14.

Sections 5.10 and 5.11 quantify the effects of Bullet′’s adaptive peer set sizing
and flow control strategies, respectively, that contribute to Bullet′’s performance
gains over BitTorrent. Here we explain the difference in performance of Bullet
versus Bullet′. First, Bullet′’s source sending strategy does not send any block
twice before sending the entire file exactly once. A Bullet source, on the other
hand, sends some duplicate blocks deliberately, in an effort to determine the
available bandwidth to each of its children in the underlying tree (as discussed
in Section 4.4.2). Second, Bullet’s request strategy causes additional duplicates
to be sent (Section 4.3.2). Finally, the peering strategy uses a fixed number of
peers, and always closes the slowest peer (Section 4.2.2).

We set the transfer block size to 16 kB in all of our experiments. This value
corresponds to BitTorrent’s subpiece size of 16 kB, and is also shared by the
Bullet and SplitStream. For all of our experiments, we made sure that there
was enough physical memory on the machines hosting the overlay participants
to cache the entire file content in memory. Our goal was to concentrate on dis-
tributed algorithm performance and not worry about swapping file blocks to
and from the disk. Bullet and SplitStream results were optimistic since we did
not perform encoding and decoding of the file. Instead, we set the encoding over-
head to 4%, assumed there would be enough physical memory to reconstruct
the file without disk swapping during decoding, and declared the file complete
when a node had received enough file blocks.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:43

 0

 0.2

 0.4

 0.6

 0.8

 1

 160 180 200 220 240 260 280 300 320

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s

download time(s)

BulletPrime rarest random request strategy
BulletPrime random request strategy

BulletPrime first request strategy

Fig. 15. Impact of request strategy on Bullet′ performance while downloading a 100-MB file under

random network packet losses.

5.9 Request Strategy

Heartened by the performance of Bullet′ with respect to other systems, we
now focus our attention on the various critical aspects of our design that we
believe contribute to Bullet′’s superior performance. Figure 15 shows the per-
formance of Bullet′ using three different peer request strategies, again using
the CDF of node completion times. In this case each node is downloading a
100-MB file. We argue the goal of a request strategy is to promote block di-
versity in the system, allowing nodes to help each other. Not surprisingly, we
see that the first-encountered request strategy performs the worst, while the
rarest-random performs best among the strategies considered for 70% of the
receivers. For the slowest nodes, the random strategy performs better. When
a receiver is downloading from senders over lossy links, higher loss rates in-
crease the latency of block availability messages due to TCP retransmissions
and use of the congestion avoidance mechanism. Subsequently, choosing the
next block to download uniformly at random does a better job of improving
diversity than the rarest-random strategy that operates on potentially stale
information.

5.10 Peer Selection

In this section we demonstrate the impossibility of choosing a single optimal
number of senders and receivers for each peer in the system, arguing for a
dynamic approach. In Figure 16 we contrast Bullet′’s performance with 10 and
14 peers (for both senders and receivers) while downloading a 100-MB file. The
system configured with 14 peers outperforms the one with 10 because in a lossy
topology like the one we are using, having more TCP flows, makes the node’s
incoming bandwidth more resilient to packet losses. Our dynamic approach
is configured to start with 10 senders and receivers, but it closely tracks the

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:44 • D. Kostić et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 160 180 200 220 240 260 280 300 320 340

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s

download time(s)

BulletPrime, 14 senders, 14 receivers
BulletPrime, dyn. #senders,#receivers
BulletPrime, 10 senders, 10 receivers

BulletPrime, 6 senders, 6 receivers

Fig. 16. Bullet′ performance under random packet losses for the static and the dynamic peer set

sizing cases while downloading a 100-MB file.

 0

 0.2

 0.4

 0.6

 0.8

 1

 141 142 143 144 145 146 147 148 149 150

P
e

rc
e

n
ta

g
e

 o
f
n

o
d

e
s

download time(s)

BulletPrime, 10 senders, 10 receivers
BulletPrime, dyn. #senders,#receivers
BulletPrime, 14 senders, 14 receivers

Fig. 17. Bullet′ performance without bandwidth changes and random packet losses for the static

and the dynamic peer set size sizing cases while downloading a 10-MB file in a topology with

constrained access links.

performance of the system with the number of peers fixed to 14 for 50% of
receivers.

For our final peering example, we construct a 100 node topology with
ample bandwidth in the core (10 Mb/s, 1-ms latency links) with 800-kb/s
access links and without random network packet losses. Figure 17 shows
that, unlike in the previous experiments, Bullet′ configured for 14 peers per-
forms worse than in a setup with 10 peers. Having more peers in this con-
strained environment forces more maximizing TCP connections to compete
for bandwidth. In addition, maintaining more peers requires sending more

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:45

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 120 140 160 180 200 220 240

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s

download time(s)

BulletPrime , 50 outst
BulletPrime , dyn outst
BulletPrime , 15 outst
BulletPrime , 9 outst
BulletPrime , 6 outst
BulletPrime , 3 outst

Fig. 18. Bullet′ performance with neither bandwidth changes nor random network packet losses

for the static and the dynamic queue sizing cases while downloading a 100-MB file.

control messages, further decreasing the system performance. Our dynamic
approach tracks, and sometimes exceeds, the performance of the better static
setup.

These cases clearly demonstrate that no statically configured peer set size is
appropriate for a wide range of network environments, and a well-tuned system
must dynamically determine the appropriate peer set size.

5.11 Outstanding Requests

We now explore determining the optimal number of per-peer outstanding re-
quests. Other systems use a fixed number of outstanding blocks. For example,
BitTorrent tries to maintain five outstanding blocks from each peer by default.
For the experiments in this section, we used an 8-kB block, and configured the
Linux kernel to allow large receiver window sizes. In our first topology, there
were 25 participants, interconnected with 10-Mb/s links with 100-ms latency.
In Figure 18 we show Bullet′’s performance when configured with 3, 6, 9, 15,
and 50 per-peer outstanding blocks for up to five senders. The number of out-
standing requests refers to the total number of block requests to any given peer,
including blocks that are queued for sending, and blocks and requests that are
in-flight. As we can see, the dynamic technique closely tracks the performance
of cases with a large number of outstanding blocks. Having too few outstanding
requests is not enough to fill the bandwidth-delay product of high-bandwidth,
high-latency links.

Although it is tempting to simplify the system by requesting the maximum
number of blocks from each peer, Figure 19 illustrates the penalty of request-
ing more blocks than it is required to saturate the TCP connection. In this
experiment, we instructed ModelNet to drop packets uniformly at random
with probability ranging between 0 and 1.5% on the core links. Due to losses,
TCP achieves lower bandwidths, requiring less data in-flight for maximum

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:46 • D. Kostić et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s

download time(s)

BulletPrime , dyn outst
BulletPrime , 15 outst
BulletPrime , 50 outst
BulletPrime , 6 outst
BulletPrime , 3 outst

Fig. 19. Bullet′ performance under random network packet losses while downloading a 100-MB

file.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1000 2000 3000 4000 5000 6000 7000

B
lo

c
k
 i
n

te
r-

a
rr

iv
a

l
ti
m

e
(s

)

Block number

Average

Fig. 20. Block interarrival times for a 100-MB file download under random network packet losses

in the absence of bandwidth changes.

performance. Under these loss-induced TCP throughput fluctuations, our dy-
namic approach outperformed all static cases.

5.12 Potential Benefits of Source Encoding for File Distribution

The purpose of this section is to quantify the potential benefits of encoding
the file at the source. Toward this end, Figure 20 shows the average block
interarrival times among the 99 receivers while downloading a 100-MB file. The
block numbers on the X axis correspond to the order in which nodes retrieve
blocks, not the actual block numbers. Further, to improve the readability of the

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:47

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s

download time(s)

Physical Link Speed Possible
MACEDON TCP feasible + startup

BulletPrime
BitTorrent

Fig. 21. Performance comparison for a 100-MB file download across 250 nodes under random

network packet losses.

graph, we do not show the maximum block interarrival times, which observe
a similar trend. A system that has a pronounced “last-block” problem would
exhibit a sharp increase in the block interarrival time for the last several blocks.
To quantify the potential benefits of encoding, we first compute the overall
average block interarrival time tb. We then consider the last 20 blocks and
calculate the cumulative overage of the average block interarrival time over tb.
In this case overage amounts to 8.38 s. We contrast this value to the potential
increase in the download time due to a fixed 4% encoding overhead of 7.60 s,
while optimistically assuming that downloads using source encoding would not
exhibit any deviation in the download times of the last few blocks. We conclude
that encoding at the source in this scenario would not be of clear benefit in
improving the average download time. This finding can be explained by the
presence of a large number of nodes that will have a particular block and will
be available to send it to other participants. Encoding at the source or within the
network can be useful when the source becomes unavailable soon after sending
the file once and with node churn [Gkantsidis and Rodriguez 2005].

5.13 Large-Scale Bullet′ Performance Under Node Churn and Flashcrowds

In this section, we conduct large-scale experiments to subject Bullet′ to de-
manding node churn and flashcrowd scenarios. To establish a baseline in this
environment, we first contrast the 250-node download performance of Bullet′

and BitTorrent while downloading a 100-MB file. As Figure 21 shows, Bullet′

outperforms BitTorrent by 25% and comes close to optimal download times, as
in previous experiments.

The next experiment stresses Bullet′ under a flashcrowd scenario. We have
conducted all other experiments in our evaluation with all nodes starting simul-
taneously at t = 0. Here, we started 125 nodes at t = 0 and then waited before

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:48 • D. Kostić et al.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

S
u
c
c
e
s
s
fu

l
d
o
w

n
lo

a
d
s

Time (s)

BulletPrime (125 late joins at t=100)
BulletPrime (125 late joins at t=200)

Fig. 22. Bullet′ performance for a 100-MB file download across 250 nodes under random network

packet losses and two delayed flash crowd scenarios.

starting the other half. The goal of this experiment was to check whether the
late arrivals have difficulty joining as a flash crowd and whether their presence
affects the download times of nodes already downloading. We conducted two
experiments, with late arrivals occurring at t = 100 and t = 200 s after the start
of the experiment. We see in Figure 22 that the initial 125 nodes complete at the
same time as when all 250 nodes join at t = 0 (Figure 21). Since in both cases the
initial set of nodes finishes at the same time, we conclude that late arrivals have
no impact on the download performance of the nodes that are already running
when a flash crowd occurs. Further, the two lines in Figure 22 are 100 s apart,
which corresponds to the spacing between late arrivals in these two experi-
ments. Therefore, the time at which the late nodes arrive does not affect their
download times. We checked the time an incoming node took to start receiving
data and to come up to full download bandwidth (more than 5 Mb/s); on average,
a late arrival received the first block after 5 s and was downloading at full rate
after 10 s. Given that a late arrival needs to: (i) join the random tree, (ii) receive a
RanSub distribute set (with RanSub running every 5 s, there is an average 2.5-s
wait time) to enable peering, and (iii) explicitly learn of blocks after establishing
peering relationships, we believe these startup latencies cannot be completely
eliminated.

Finally, we subjected Bullet′ to a node churn scenario where each of the 249
receivers had an exponentially distributed mean lifetime of 5 min (300 s). Every
node started downloading the file from scratch. Figure 23 shows the number
of nodes that successfully downloaded the 100-MB file in this demanding en-
vironment. Comparing the results of this experiment to the baseline (Figure
21), we first see that the nodes that are given enough time to run when they
start at t = 0 complete the download at a time that is roughly equivalent to the
static scenario. Since this slowdown is less than 5%, we conclude that Bullet′

is resilient to sudden node departures. The remainder of the curve is steady,

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:49

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800 900

S
u

c
c
e

s
s
fu

l
d

o
w

n
lo

a
d

s

Time (s)

BulletPrime

Fig. 23. Bullet′ performance for a 100-MB file download across 250 nodes under random network

packet losses and churn (5-min average node uptime).

which means that incoming nodes have no difficulty completing the download
under churn. As a matter of fact, most of them complete their downloads in
155 s on average, which is 15% faster than the nodes that started initially.
Compared to the late-arriving flash crowds scenario (Figure 22), the download
times are quicker because there are fewer nodes that are joining simultane-
ously. These individual download times are almost at the limit of the physical
link bandwidth.

5.14 File Download on PlanetLab

This section contains results from the deployment of Bullet′ over the Planet-
Lab [Peterson et al. 2002] wide-area network testbed in October of 2004. For our
first experiment, we chose 41 nodes for our deployment, with no two machines
being deployed at the same site. We configured Bullet′, Bullet, and SplitStream
(MACEDON MS implementation) to use a 100-kB block size. Bullet and Split-
Stream were not performing the file encoding/decoding; instead we marked
the downloads as successful when a required number of distinct file blocks
was successfully received, including fixed 4% overhead that an actual encoding
scheme would incur. We see in Figure 24 that Bullet′ consistently outperforms
other systems in the wide area. For example, the slowest Bullet′ node completes
the 50-MB downloaded approximately 400 s sooner than BitTorrent’s slowest
downloader.

In our final PlanetLab experiment, we downloaded a 50-MB file across 250
nodes in May of 2007. We used Plush [Albrecht et al. 2006] to initiate experi-
ments with 450 nodes across all of entire PlanetLab. We started the back-to-
back experiments on the same set of nodes when 265 nodes joined the Plush con-
troller and installed the target executables. We used alice.cs.princeton.edu
as the source and ran the experiments for 900 s. Compared to our experiments

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:50 • D. Kostić et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Time

BulletPrime
SplitstreamSpeedtest

BulletSpeedtest
BitTorrent

Fig. 24. Comparison of Bullet′ to Bullet, BitTorrent, and SplitStream for 50-MB file download on

41 PlanetLab nodes in October of 2004.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800 900

S
u
c
c
e
s
s
fu

l
d
o
w

n
lo

a
d
s

Time (s)

BulletPrime
BitTorrent

Fig. 25. Comparison of Bullet′ to BitTorrent for 50-MB file download on 250 PlanetLab nodes in

May of 2007 (10 BitTorrent nodes did not finish in 900 s).

performed in 2004, we observe higher loads and greater difficulty in locating
lightly loaded and responsive nodes; for example, BitTorrent was 10 nodes short
in meeting the 250 node target in 900 s. Nevertheless, as Figure 25 shows,
Bullet′ maintained the 50% performance advantage over BitTorrent.

6. RELATED WORK

This section describes the related work, divided into logical sections.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:51

6.1 Reliable IP Multicast

The early content distribution mechanisms used IP multicast [Deering 1991],
a network level service. To disseminate content to a group of receivers from
a single source, routers would organize into a forwarding tree. A number of
methods were proposed for IP multicast tree construction. However, numer-
ous problems, including reliability, group management, scalability, congestion
control, and dealing with heterogeneity, have prevented the widespread de-
ployment of IP Multicast. Most importantly, even if all other problems were
addressed, IP multicast would still be suboptimal for high-bandwidth data dis-
semination because it does not consider bandwidth when constructing its dis-
tribution tree. An IP multicast tree is typically built by reusing portions of the
IP point-to-point routing paths [Dalal and Metcalfe 1978], which are known to
be suboptimal [Andersen et al. 2001; Savage et al. 1999].

We discuss in more detail the numerous protocols that aim to add reliability
to IP multicast. In Scalable Reliable Multicast (SRM) [Floyd et al. 1997], nodes
multicast retransmission requests for missed packets. Two techniques attempt
to improve the scalability of this approach: probabilistic choice of retransmis-
sion timeouts, and organization of receivers into hierarchical local recovery
groups. However, it is difficult to find appropriate timer values and local scoping
settings (via the TTL field) for a wide range of topologies, number of receivers,
etc., even when adaptive techniques are used. One recent study [Birman et al.
1999] showed that SRM may have significant overhead due to retransmission
requests.

Bullet is closely related to efforts that use epidemic data propagation tech-
niques to recover from losses in the nonreliable IP-multicast tree. In pbcast
[Birman et al. 1999], a node has global group membership, and periodically
chooses a random subset of peers to send a digest of its received packets. A node
that receives the digest responds to the sender with the missing packets in a
last-in, first-out fashion. Lbpcast [Eugster et al. 2001] addresses pbcast’s scala-
bility issues (associated with global knowledge) by constructing, in a decentral-
ized fashion, a partial group membership view at each node. The average size
of the views is engineered to allow a message to reach all participants with high
probability. Since lbpcast does not require an underlying tree for data distribu-
tion and relies on the push-gossiping model, its network overhead can be quite
high.

Compared to the reliable multicast efforts, Bullet behaves favorably in terms
of the network overhead because nodes do not “blindly” request retransmissions
from their peers. Instead, Bullet uses the summary views it obtains through
RanSub to guide its actions toward nodes with disjoint content. Further, a
Bullet node splits the retransmission load between all of its peers. We note
that pbcast nodes contain a mechanism to rate-limit retransmitted packets
and to send different packets in response to the same digest. However, this does
not guarantee that packets received in parallel from multiple peers will not be
duplicates. More importantly, the multicast recovery methods are limited by the
bandwidth through the tree, while Bullet strives to provide more bandwidth to
all receivers by making data deliberately disjoint throughout the tree.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:52 • D. Kostić et al.

6.2 Content Distribution Networks (CDNs)

Content distribution networks (CDNs) [Akamai (www.akamai.com); Wang et al.
2004] are purpose-built for disseminating content to a large group of users and
comprise tens of thousands of well-provisioned machines deployed at Internet
service providers (ISPs). Since they serve HTTP content, these networks are
tailored for the pull-based data model, where clients explicitly request a file
and the CDN redirects the request to the Web server that is going to provide
data quickly. To minimize the file transfer time, the CDN takes into account
the network latencies to its server as well as the server loads when making the
redirection decision. CDNs are expensive to deploy and operate. Moreover, they
are tailored for Web-size content, which is less than 100 kB on average.

CoBlitz [Park and Pai 2006] builds upon CoDeeN [Wang et al. 2004], an
existing HTTP Content distribution network, to support dissemination of large
files. To prevent deterioration of CDN cache hit rates due to large objects, the
system splits a large file into smaller units and reassembles it transparently to
the user. In contrast, Bullet′ operates without infrastructure support to achieve
high-bandwidth download rates.

6.3 High-Bandwidth Overlay Trees

Built as logical networks on top of the Internet, overlay networks have recently
emerged as a fundamental building block for evolving the network architecture.
By leveraging end-host storage, bandwidth, and computing power, overlay net-
works support efficient multicast-style data dissemination without requiring
any network support beyond the ubiquitous IP unicast.

Mimicking the IP multicast approach, the typical data dissemination overlay
allows participants to self-organize into a tree. Here, the source sends the same
data to each of its children, which then serve as intermediaries and forward
any data they receive to their own children, all the way down to the tree leaves.
We argue that trees have two fundamental limitations for data dissemination.
First, since all data comes from a single parent, participants are forced to con-
tinuously probe in search of a parent with an acceptable level of bandwidth.
Probing for available bandwidth is still an active area of research [Hu and
Steenkiste 2003; Jain and Dovrolis 2002], but probing usually involves sending
small amounts of useless data or streaming at a specific rate for a short amount
time. Systemwide, the probing traffic is a considerable overhead. More impor-
tantly, probing interferes with useful data traffic on network links, including
the potentially constrained inbound and outbound access links, and reduces
overall throughput. Second, due to packet losses and failures, the bandwidth in
an overlay tree is monotonically decreasing down the tree. Several mechanisms
were proposed for recovering from losses [Birman et al. 1999; Byers et al. 2002];
however the participants are limited to recovering data that is present in the
overlay. Recall that every parent attempts to send identical data to all of its
children, even when the outbound access bandwidth is constrained.

Narada [hua Chu et al. 2001] builds a delay-optimized mesh interconnect-
ing all participating nodes and actively measures the available bandwidth on

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:53

overlay links. It then runs a standard routing protocol on top of the overlay
mesh to construct forwarding trees using each node as a possible source. Narada
nodes maintain global knowledge about all group participants, limiting system
scalability to several tens of nodes. A version of the protocol modified for single-
source overlay multicast was used for broadcasting of conferences [hua Chu
et al. 2004]. The bandwidth available through a Narada tree is still limited to
the bandwidth available from each parent. On the other hand, the fundamental
goal of Bullet is to increase bandwidth through download of disjoint data from
multiple peers.

Overcast [Jannotti et al. 2000] is an example of a bandwidth-efficient overlay
tree construction algorithm. In this system, all nodes join at the root and mi-
grate down to the point in the tree where they are still able to maintain some
minimum level of bandwidth. Bullet is expected to be more resilient to node
departures than any tree, including Overcast. Instead of a node waiting to get
the data it missed from a new parent, a node can start getting data from its per-
pendicular peers. This transition is seamless, as the node that is disconnected
from its parent will start demanding more missing packets from its peers dur-
ing the standard round of refreshing its filters. Overcast convergence time is
limited by probes to immediate siblings and ancestors. Bullet is able to provide
approximately a target bandwidth without having a fully converged tree.

6.4 Overlay Meshes

The efforts in this category are loosely categorized as overlay meshes. We have
categorized them into pioneering efforts, work that promotes use of perpendicu-
lar bandwidth, the transition to multiple dissemination trees, and we conclude
with “unstructured” meshes that are perhaps closest in spirit to Bullet.

6.4.1 Pioneering Efforts. Snoeren et al. [2001] were perhaps the first to use
an overlay mesh for data dissemination. In this system, every node chooses n
“parents” from which to receive duplicate packet streams. The emphasis of this
primarily push-based system is on reliability and timely delivery, so nodes flood
the data over the mesh. The system does not attempt to improve the bandwidth
delivered to the overlay participants by sending disjoint data at each level.
Further, during recovery from parent failure, it limits an overlay router’s choice
of parents to nodes with a level number that is less than its own level number.

6.4.2 “Perpendicular” Downloads. The power of “perpendicular” down-
loads was perhaps first widely demonstrated by Kazaa (Kazaa Media Desktop;
go online to http://www.kazaa.com), the popular peer-to-peer file swapping net-
work. Kazaa nodes are organized into a scalable, hierarchical structure. Indi-
vidual users search for desired content in the structure and proceed to simul-
taneously download potentially disjoint pieces from nodes that already have
it. Since Kazaa does not address the multicast communication model, a large
fraction of users downloading the same file would consume more bandwidth
than nodes organized into the Bullet overlay structure.

Informed Content Delivery [Byers et al. 2002] work advocates the use of
the perpendicular overlay links to recover data that is made disjoint by losses

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:54 • D. Kostić et al.

during dissemination over an overlay tree. Byers et al. offer quick and efficient
methods for reconciliation of partially available content between two peers in
the overlay tree. Our Bullet prototype uses these techniques and extends them
to allow streaming and continuous reconciliation between peers. However, this
work does not address an important issue of locating disjoint content. Similarly,
authors do not offer a way of retrieving the disjoint data at a high rate. Bullet
overcomes both of these shortcomings by using RanSub to locate missing data
and by orchestrating data retrieval using the adaptive peering strategy and
flow control of data. In addition, Bullet makes data deliberately disjoint at
each node to increase throughput.

6.4.3 Multiple Overlay Trees and Other Structured Overlay Meshes.
FastReplica [Cherkasova and Lee 2003] addresses the problem of reliable and
efficient file distribution in content distribution networks. In the basic algo-
rithm, nodes are organized into groups of fixed size (n), with full group mem-
bership information at each node. To distribute the file, a node splits it into
n equal-sized portions, sends the portions to other group members, and in-
structs them to download the missing pieces in parallel from other group
members. Since only a fixed portion of the file is transmitted along each
of the overlay links, the impact of congestion is smaller than in the case
of tree distribution. However, since it treats all paths equally, FastReplica
does not take full advantage of high-bandwidth overlay links in the system.
Since it requires file store-and-forward logic at each level of the hierarchy
necessary for scaling the system, it may not be applicable to high-bandwidth
streaming.

In parallel to our own work, SplitStream [Castro et al. 2003] also has the
goal of achieving high bandwidth data dissemination. It operates by splitting
the multicast stream into k stripes, transmitting each stripe along a separate
multicast tree built using Scribe [Rowstron et al. 2001]. The key design goal
of the tree construction mechanism is to have each node be an intermediate
node in at most one tree (while observing both inbound and outbound node
bandwidth constraints), thereby reducing the impact of a single node’s sudden
departure on the rest of the system. The join procedure can potentially sacrifice
the interior-node-disjointness achieved by Scribe. Perhaps more importantly,
SplitStream assumes that there is enough available bandwidth to carry each
stripe on every link of the tree, including the links between the data source and
the roots of individual stripe trees independently chosen by Scribe. Therefore,
system throughput might be decreased by congestion that does not occur on the
access links. To some extent, Bullet and SplitStream are complementary. For
instance, Bullet could run on each of the stripes to maximize the bandwidth
delivered to each node along each stripe.

CoopNet [Padmanabhan et al. 2003b] considers live content streaming in a
peer-to-peer environment, subject to high node churn. Consequently, the system
favors resilience over network efficiency. It uses a centralized approach for con-
structing either random or deterministic node-disjoint (similar to SplitStream)
trees, and it includes an MDC [Goyal 2001] adaptation framework based
on scalable receiver feedback that attempts to maximize the signal-to-noise

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:55

ratio perceived by receivers. In the case of on-demand streaming, CoopNet
[Padmanabhan et al. 2002] addresses the flash-crowd problem at the central
server by redirecting incoming clients to a fixed number of nodes that have
previously retrieved portions of the same content. Compared to CoopNet,
Bullet provides nodes with a uniformly random subset of the system-wide
distribution of the file.

Young et al. [2004] constructed an overlay mesh of k edge-disjoint minimum-
cost spanning trees (MSTs). The algorithm for distributed construction of trees
uses overlay link metric information such as latency, loss rate, or bandwidth
that is determined by a potentially long and bandwidth-consuming probing
stage. The resulting trees might start resembling a random mesh if the links
have to be excluded in an effort to reduce the probing overhead. In contrast,
Bullet′ builds a content-informed mesh and completely eliminates the need for
probing because it uses transfers of useful information to adapt to the charac-
teristics of the underlying network.

The latest extension [Sung et al. 2006] of the Narada [hua Chu et al. 2001]
work leverages a multitree framework and considers the design of a bandwidth-
demanding overlay broadcasting (streaming) application that runs in envi-
ronments where participants have limited and asymmetric bandwidth, with
significant heterogeneity in outgoing bandwidth. To encourage participants to
increase their contributions, the system is contribution-aware: it distributes
more bandwidth to participants that contribute more. By leveraging this pol-
icy, all participants experience improved performance relative to the case where
each participant is required to forward only as much bandwidth as it receives
(tit-for-tat policy).

6.4.4 Unstructured Overlay Meshes. BitTorrent [Cohen 2003] is a system
in wide use in the Internet for distribution of large files. Incoming nodes rely
on the centralized tracker to provide a list of existing system participants and
system-wide block distribution for random peering. The tracker presents a sin-
gle point of failure and limits the system scalability. Lowering the tracker com-
munication rate for file state updates could hurt the overall system perfor-
mance, as the information might be out of date. Further, BitTorrent does not
employ any strategy to disseminate data to different regions of the network,
potentially making it more difficult to recover data depending on client access
patterns. BitTorrent enforces fairness via a tit-for-tat (TFT) mechanism based
on bandwidth. Our inspection of the BitTorrent code reveals hard coded con-
stants for request strategies and peering strategies, potentially limiting the
adaptability of the system to a variety of network conditions relative to our
approach.

BitTorrent has attracted considerable attention recently. The work on perfor-
mance modelling of BitTorrent-like protocols [Qiu and Srikant 2004] has shown
that unstructured overlay meshes scale well with the number of participants.
Massoulie and Vojnovic [2005] further demonstrated that file swarming sys-
tems stabilize around a finite equilibrium point, regardless of the arrival rate.

Several improvements have been suggested to the baseline BitTorrent TFT
protocol, including a block-based TFT with a limit on the difference between the

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:56 • D. Kostić et al.

number of uploaded and download blocks [Bharambe et al. 2006] (the baseline
BitTorrent TFT protocol is rate-based). These modifications allow for superior
protection against free riders and better integration of nodes with heteroge-
neous bandwidth. This work also shows that some BitTorrent nodes upload
several times more content than they download. Legout et al. [2006] have in-
strumented a BitTorrent client and shown that the rarest first (referred to as
rarest-random in this article) algorithm guarantees close to ideal diversity of
the blocks among peers. Work on BitTyrant [Piatek et al. 2007] has shown
that it is possible to take advantage of the standard tit-for-tat and choking al-
gorithms in BitTorrent to maximize a downloader’s performance at the same
level of upload contribution. Like Bullet′, this work also shows that having a
larger number of senders improves performance for peers with high inbound
access bandwidth.

Slurpie [Sherwood et al. 2004] improves upon the performance of BitTorrent
by using an adaptive downloading mechanism to scale the number of peers a
node should have. However, it does not have a way of dynamically changing the
number of outstanding blocks on a per-peer basis. In addition, although Slurpie
has a random backoff algorithm that prevents too many nodes from going to
the source simultaneously, nodes can connect to the Web server and request
arbitrary blocks. This would increase the minimum amount of time it takes all
blocks to be made available to the Slurpie network, hence leading to increased
minimum download time.

CoolStreaming [Zhang et al. 2005] is a BitTorrent-like system for live stream-
ing over the Internet. CoolStreaming uses a deadline-oriented scheduling algo-
rithm to retrieve data in time for playback. Nodes gossip membership informa-
tion, which they use to establish random peering relationships. This peering
strategy does not account for diversity in the content available at possible peers.
Further, in environments with high heterogeneity in terms of bandwidth capac-
ity, the absence of a dynamic peer set sizing algorithm may result in underuti-
lization of a node’s access link. Chainsaw [Pai et al. 2005] is another example
of an unstructured overlay mesh used for data streaming. Like CoolStream-
ing, Chainsaw nodes make random peering decisions. In further contrast to
Bullet′, Chainsaw uses a fixed minimum number of sending peers, and has
no dynamic flow control. Unlike these efforts that use gossiping, Bullet′ uses
RanSub, which delivers provably uniformly random subsets of the systemwide
state.

Some recent efforts concentrate on reducing the overall communication cost
of content distribution. Instead of peering at random, nodes in the Julia Content
Distribution Network [Bickson and Malkhi 2005] take latency, bandwidth, and
download progress into account when making peering decisions. Compared to
BitTorrent, the overall Julia communication cost is 33% lower, at the expense
of a slightly slower average download time.

6.4.5 Network Coding. Since determining the right set of push-based trees
(packing Steiner trees optimally) for data dissemination is APX-hard [Jain et al.
2003], there is an increased interest in the use of network coding [Ahlswede
et al. 2000] for data dissemination [Chou et al. 2003]. With network coding, the

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:57

receivers in the data distribution system act as intermediaries and generate
encoded packets that are likely to be useful to downstream nodes, that is, to
other receivers. At the cost of additional computation at intermediate nodes,
network coding enables random overlay topologies to achieve high through-
put [Jain et al. 2005].

Avalanche [Gkantsidis and Rodriguez 2005] is an overlay-based file dis-
tribution system that uses network coding. Through simulation, the authors
demonstrated the usefulness of producing encoded blocks by all system partic-
ipants under scenarios when the source departs soon after sending the file
once, and on specific network topologies (e.g., two clusters connected with
a congested link). In their most recent work on Avalanche, Gkantsidis and
Rodriguez [Gkantsidis et al. 2006] demonstrated successful live dissemina-
tion of a large file to hundreds of users. They reported low CPU utilization,
resilience to unreachable hosts, and successful downloads in the face of pre-
mature source departure. It is likely Avalanche will benefit from the tech-
niques outlined in this article. For example, Avalanche participants will have
to choose a number of sending peers that will fill their incoming pipes. In addi-
tion, receivers will have to negotiate carefully the transfers of encoded blocks
produced at random to avoid bandwidth waste due to blocks that do not aid
in file reconstruction, while keeping the incoming bandwidth high from each
peer.

Producing a high-performance content distribution system based on network
coding is not trivial. Much like with erasure encoding, decoding a file requires
random access to the encoded blocks. This in turn might cause slow decoding
performance if the file does not fit into physical memory. Further, decoding
entails solving a system of linear equations, an O(n3) operation, where n is the
number of original blocks. Reducing n by increasing the block size can result in
network inefficiencies due to long wait times for block downloads.

7. CONCLUSIONS

Given the suboptimal performance and reliability of existing systems, this work
operates on the premise that the model for high-bandwidth multicast data dis-
semination should be reexamined, and makes the following contributions:

One key contribution of this work is the design and analysis of Bullet,
an overlay construction algorithm that creates a mesh over any distribu-
tion tree that matches the properties of the underlying network topology.
As a benefit, Bullet eliminates the overhead required to probe for available
bandwidth in traditional distributed tree construction techniques. Another
contribution of this work is a mechanism for making data deliberately dis-
joint and then distributing it in a uniform way that makes the probability of
finding a peer containing missing data equal for all nodes. An insight that
makes Bullet scalable is the use of RanSub for locating missing data from
peers in an efficient manner. Further, we propose a mechanism for recover-
ing data from peers in a disjoint manner that minimizes retrieval of duplicate
data objects. A large-scale evaluation shows that Bullet running over a ran-
dom tree can achieve twice the throughput of streaming over a bandwidth

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:58 • D. Kostić et al.

tree computed by an off-line algorithm with perfect information about the
network.

Bullet′ continues the overlay mesh data dissemination approach advocated
by Bullet, and considers the problem of large file dissemination to a large group
of Internet users. The first contribution of this work is the exploration of the de-
sign space of file distribution protocols. Specifically, we examine the problems
of source sending strategy, push versus pull of data, need for data encoding,
download peer set selection, data request strategy, and flow control. Second,
we conduct a detailed performance evaluation of a number of competing sys-
tems running in both controlled emulation environments and live across the
Internet. Our experience shows that protocols which have tunable parameters
might perform well in a certain range of conditions, but that once outside that
range they will break down and perform worse than if they had been tuned
differently. To combat this problem, we employ adaptive strategies to self-tune
to dynamically changing network conditions. For example, Bullet′ uses a feed-
back control loop to determine dynamically the quantity of outstanding data
requested from each sending peer. This method of flow control keeps the data
connection occupied while risking waiting for the least amount of data in case
bandwidth from the peer deteriorates. We have compared Bullet′ with BitTor-
rent and SplitStream. In the scenarios we considered, Bullet′ outperforms the
other systems.

REFERENCES

AHLSWEDE, R., CAI, N., LI, S.-Y. R., AND YEUNG, R. W. 2000. Network information flow. IEEE Trans.
Inform. Theor. 46, 4 (Jul.), 1204–1216.

ALBRECHT, J., TUTTLE, C., SNOEREN, A. C., AND VAHDAT, A. 2006. PlanetLab application management

using Plush. ACM SIGOPS Operat. Syst. Rev. 40 1 (Jan.), 33–40.

ANDERSEN, D. G., BALAKRISHNAN, H., KAASHOEK, M. F., AND MORRIS, R. 2001. Resilient overlay net-

works. In Proceedings of the Symposium on Operating Systems Principles.

BANERJEE, S., BHATTACHARJEE, B., AND KOMMAREDDY, C. 2002. Scalable application layer multicast.

In Proceedings of ACM SIGCOMM.

BHARAMBE, A., HERLEY, C., AND PADMANABHAN, V. 2006. Analyzing and improving a BitTorrent

network’s performance mechanisms. In Proceedings of IEEE INFOCOM.

BICKSON, D. AND MALKHI, D. 2005. The Julia content distribution network. In Proceedings of the
Second Workshop on Real, Large Distributed Systems (WORLDS).

BIRMAN, K., HAYDEN, M., OZKASAP, O., XIAO, Z., BUDIU, M., AND MINSKY, Y. 1999. Bimodal multicast.

ACM Trans. Comput. Syst. 17, 2 (May), 41–88.

BLOOM, B. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13, 7

(Jul.), 422–426.

BRODER, A. 1997. On the resemblance and containment of documents. In Proceedings of the
Conference on Compression and Complexity of Sequences (SEQUENCES’97).

BYERS, J. W., CONSIDINE, J., MITZENMACHER, M., AND ROST, S. 2002. Informed content delivery across

adaptive overlay networks. In Proceedings of ACM SIGCOMM.

BYERS, J. W., LUBY, M., MITZENMACHER, M., AND REGE, A. 1998. A digital fountain approach to

reliable distribution of bulk data. In Proceedings of ACM SIGCOMM.

CALVERT, K., DOAR, M., AND ZEGURA, E. W. 1997. Modeling Internet topology. IEEE Commun. Mag.
35, 6 (Jun.), 160–163.

CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., NANDI, A., ROWSTRON, A., AND SINGH, A. 2003. Split-

stream: High-bandwidth content distribution in cooperative environments. In Proceedings of the
19th ACM Symposium on Operating System Principles.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:59

CHANG, H., GOVINDAN, R., JAMIN, S., SHENKER, S., AND WILLINGER, W. 2002. Towards capturing

representative AS-level Internet topologies. In Proceedings of ACM SIGMETRICS.

CHERKASOVA, L. AND LEE, J. 2003. FastReplica: Efficient large file distribution within content

delivery networks. In Proceedings of the 4th USENIX Symposium on Internet Technologies and
Systems.

CHOU, P. A., WU, Y., AND JAIN, K. 2003. Practical network coding. In Proceedings of the Allerton
Conference on Communication, Control, and Computing.

COHEN, B. 2003. Incentives build robustness in bittorrent. In Proceedings of the First Workshop
on the Economics of Peer-to-Peer Systems.

COHEN, R. AND KAEMPFER, G. 2001. A unicast-based approach for streaming multicast. In Proceed-
ing of INFOCOM. 440–448.

DABEK, F., LI, J., SIT, E., KAASHOEK, F., MORRIS, R., AND BLAKE, C. 2004. Designing a DHT for low

latency and high throughput. In Proceedings of the USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI, San Francisco, CA).

DALAL, Y. K. AND METCALFE, R. M. 1978. Reverse path forwarding of broadcast packets. Commun.
ACM 21, 12, 1040–1048.

DEERING, S. E. 1991. Multicast routing in a datagram internetwork. Ph.D. dissertation. Stanford

University, Stanford, CA.

DEMERS, A., GREENE, D., HAUSER, C., IRISH, W., LARSON, J., SHENKER, S., STURGIS, H., SWINEHART, D., AND

TERRY, D. 1987. Epidemic algorithms for replicated database maintenance. In Proceedings of
the Sixth Symposium on Principles of Distributed Computing. 1–12.

EUGSTER, P., GUERRAOUI, R., HANDURUKANDE, S., KOUZNETSOV, P., AND KERMARREC, A.-M. 2003.

Lightweight probabilistic broadcast. ACM Trans. Comput. Syst. 21, 4, 341–374.

EUGSTER, P., HANDURUKANDE, S., GUERRAOUI, R., KERMARREC, A.-M., AND KOUZNETSOV, P. 2001.

Lightweight probabilistic broadcast. In Proceedings of The International Conference on Depend-
able Systems and Networks (DSN).

FLOYD, S., HANDLEY, M., PADHYE, J., AND WIDMER, J. 2000. Equation-based congestion con-

trol for unicast applications. In Proceedings of ACM SIGCOMM (Stockholm, Sweden). 43–

56.

FLOYD, S., JACOBSON, V., LIU, C.-G., MCCANNE, S., AND ZHANG, L. 1997. A reliable multicast frame-

work for light-weight sessions and application level framing. IEEE/ACM Trans. Network. 5, 6,

784–803.

GKANTSIDIS, C., MILLER, J., AND RODRIGUEZ, P. 2006. Anatomy of a p2p content distribution sys-

tem with network coding. In Proceedings of the Second International Peer to Peer Symposium
(IPTPS).

GKANTSIDIS, C. AND RODRIGUEZ, P. R. 2005. Network coding for large scale content distribution. In

Proceedings of IEEE INFOCOM.

GOYAL, V. K. 2001. Multiple description coding: Compression meets the network. IEEE Signal
Process. Mag. 18, 5, 74–93.

HU, N. AND STEENKISTE, P. 2003. Evaluation and characterization of available bandwidth probing

techniques. IEEE J. Select are Commun. 21, 6, 879–895.

HUA CHU, Y., GANJAM, A., NG, T. S. E., RAO, S. G., SRIPANIDKULCHAI, K., ZHAN, J., AND ZHANG, H. 2004.

Early experience with an Internet broadcast system based on overlay multicast. In Proceedings
of the USENIX 2004 Annual Technical Conference.

HUA CHU, Y., RAO, S., AND ZHANG, H. 2000. A case for end system multicast. In Proceedings of
the ACM Sigmetrics 2000 International Conference on Measurement and Modeling of Computer
Systems.

HUA CHU, Y., RAO, S. G., SESHAN, S., AND ZHANG, H. 2001. Enabling Conferencing Applications on

the Internet using an overlay multicast architecture. In Proceedings of ACM SIGCOMM.

INFORMATIONWEEK. 2004. Go online to http://informationweek.com/story/showArticle.jhtml?

articleID=50900297.

JAIN, K., LOVASZ, L., AND CHOU, P. A. 2005. Building scalable and robust peer-to-peer overlay net-

works for broadcasting using network coding. In Proceedings of the ACM Conference on Principles
Of Distributed Computing (PODC).

JAIN, K., MAHDIAN, M., AND SALAVATIPOUR, M. R. 2003. Packing Steiner trees. In Proceeding of the
14th ACMSIAM Symposium on Discrete Algorithms.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

3:60 • D. Kostić et al.

JAIN, M. AND DOVROLIS, C. 2002. End-to-end available bandwidth: Measurement methodology,

dynamics, and relation with TCP Throughput. In Proceedings of ACM SIGCOMM.

JANNOTTI, J., GIFFORD, D. K., JOHNSON, K. L., KAASHOEK, M. F., AND JAMES W. O’TOOLE, J. 2000. Over-

cast: Reliable multicasting with an overlay network. In Proceedings of the Conference on Oper-
ating Systems Design and Implementation (OSDI).

KATABI, D., HANDLEY, M., AND ROHRS, C. 2002. Internet congestion control for high bandwidth-

delay product networks. In Proceedings of ACM SIGCOMM.

KIM, M. S., LAM, S. S., AND LEE, D.-Y. 2002. Optimal distribution tree for Internet streaming

media. Tech. rep. TR-02-48. Department of Computer Sciences, University of Texas at Austin,

Austin, TX.

KOSTIĆ, D., BRAUD, R., KILLIAN, C., VANDEKIEFT, E., ANDERSON, J. W., SNOEREN, A. C., AND VAHDAT, A.

2005. Maintaining high bandwidth under dynamic network conditions. In Proceedings of the
USENIX 2005 Annual Technical Conference.

KOSTIĆ, D., RODRIGUEZ, A., ALBRECHT, J., BHIRUD, A., AND VAHDAT, A. 2003a. Using random sub-

sets to build scalable network services. In Proceedings of the USENIX Symposium on Internet
Technologies and Systems.

KOSTIĆ, D., RODRIGUEZ, A., ALBRECHT, J., AND VAHDAT, A. 2003b. Bullet: High bandwidth data dis-

semination using an overlay mesh. In Proceedings of the 19th ACM Symposium on Operating
System Principles.

KROHN, M. N., FREEDMAN, M. J., AND MAZIERES, D. 2004. On-the-fly verification of rateless erasure

codes for efficient content distribution. In Proceedings of the IEEE Symposium on Security and
Privacy (Oakland, CA).

LEGOUT, A., URVOY-KELLER, G., AND MICHIARDI, P. 2006. Rarest first and choke algorithms are

enough. In IMC’06: Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement.
203–216.

LUBY, M. 2002. LT codes. In Proceedings of 43rd Annual IEEE Symposium on Foundations of
Computer Science.

LUBY, M. G., MITZENMACHER, M., SHOKROLLAHI, M. A., SPIELMAN, D. A., AND STEMANN, V.

1997. Practical loss-resilient codes. In Proceedings of the 29th Annual ACM Sympo-
sium on the Theory of Computing (STOC ’97). Ass. Comp. Mach. Press, New York, 150–

159.

MASSOULIE, L. AND VOJNOVIC, M. 2005. Coupon replication systems. In Proceedings of ACM SIG-
METRICS.

MAYMOUNKOV, P. AND MAZIERES, D. 2003. Rateless codes and big downloads. In Proceedings of the
Second International Peer to Peer Symposium (IPTPS).

PADHYE, J., FIROIU, V., TOWSLEY, D., AND KRUSOE, J. 1998. Modeling TCP throughput: A simple

model and its empirical validation. In Proceedings of ACM SIGCOMM (Vancouver, Canada).

303–314.

PADMANABHAN, V. N., QIU, L., AND WANG, H. J. 2003. Server-based inference of Internet link lossi-

ness. In Proceedings of the IEEE INFOCOM. (San Francisco, CA).

PADMANABHAN, V. N., WANG, H. J., AND CHOU, P. A. 2003b. Resilient peer-to-peer streaming. In

Proceedings of the 11th ICNP (Atlanta, GA).

PADMANABHAN, V. N., WANG, H. J., CHOU, P. A., AND SRIPANIDKULCHAI, K. 2002. Distributing streaming

media content using cooperative networking. In Proceedings of ACM/IEEE NOSSDAV.

PAI, V., KUMAR, K., TAMILMANI, K., SAMBAMURTHY, V., AND MOHR, A. E. 2005. Chainsaw: Eliminating

trees from overlay multicast. In Proceedings of I PT PS.

PARK, K. AND PAI, V. S. 2006. Scale and performance in the CoBlitz large-file distribution ser-

vice. In Proceedings of the 3rd USENIX/ACM Symposium on Networked Systems Design and
Implementation (NSDI).

PETERSON, L., ANDERSON, T., CULLER, D., AND ROSCOE, T. 2002. A blueprint for introducing disruptive

technology into the Internet. In Proceedings of ACM HotNets-I.
PIATEK, M., ISDAL, T., ANDERSON, T., KRISHNAMURTHY, A., AND VENKATARAMANI, A. 2007. Do incen-

tives build robustness in BitTorrent? In Proceedings of the 4th USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI).

PRIM, R. C. 1957. Shortest connection networks and some generalizations. In Bell Syst. Tech. J.
36, 6, 1389–1401.

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

High-Bandwidth Data Dissemination • 3:61

QIU, D. AND SRIKANT, R. 2004. Modeling and performance analysis of Bittorrentlike peer-to-peer

networks. In Proceedings of ACM SIGCOMM.

RODRIGUEZ, A., KILLIAN, C., BHAT, S., KOSTIĆ, D., AND VAHDAT, A. 2004a. MACEDON: Methodol-

ogy for automatically creating, evaluating, and designing overlay networks. In Proceedings of
the USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI, San

Francisco, CA).

RODRIGUEZ, A., KOSTIĆ, D., AND VAHDAT, A. 2004b. Scalability in adaptive multi-metric overlays.

In Proceedings the 24th International Conference on Distributed Computing Systems (ICDCS).

ROWSTRON, A., KERMARREC, A.-M., CASTRO, M., AND DRUSCHEL, P. 2001. SCRIBE: The design of a

large-scale event notification infrastructure. In Proceedings of the Third International Workshop
on Networked Group Communication.

SAROIU, S., GUMMADI, K. P., DUNN, R. J., GRIBBLE, S. D., AND LEVY, H. M. 2002. An analysis of Internet

content delivery systems. In Proceedings of 5th Symposium on Operating Systems Design and
Implementation (OSDI).

SAVAGE, S., COLLINS, A., HOFFMAN, E., SNELL, J., AND ANDERSON, T. 1999. The end-to-end effects of

Internet path selection. In Proceedings of ACM SIGCOMM.

SHERWOOD, R., BRAUD, R., AND BHATTACHARJEE, B. 2004. Slurpie: A cooperative bulk data transfer

protocol. In Proceedings of IEEE INFOCOM.

SHOKROLLAHI, A. 2003. Raptor codes. Tech. rep. DF2003-06-001. Digital Fountain, Inc.

SNOEREN, A. C., CONLEY, K., AND GIFFORD, D. K. 2001. Mesh-based content routing using XML. In

Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP).

SUNG, Y.-W., BISHOP, M., AND RAO, S. 2006. Enabling contribution awareness in an overlay broad-

casting system. In Proceedings of ACM SIGCOMM.

VAHDAT, A., YOCUM, K., WALSH, K., MAHADEVAN, P., KOSTIĆ, D., CHASE, J., AND BECKER, D. 2002. Scal-

ability and accuracy in a large-scale network emulator. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI).

WANG, L., PARK, K., PANG, R., PAI, V. S., AND PETERSON, L. 2004. Reliability and Security in the

CoDeeN content distribution network. In Proceedings of the USENIX 2004 Annual Technical
Conference.

YOUNG, A., CHEN, J., MA, Z., KRISHNAMURTHY, A., PETERSON, L., AND WANG, R. Y. 2004. Overlay mesh

construction using interleaved spanning trees. In Proceedings of IEEE INFOCOM.

ZHANG, X., LIUY, J., LIZ, B., AND YUM, T.-S. P. 2005. CoolStreaming/DONet: A data-driven overlay

network for efficient live media streaming. In Proceedings of IEEE INFOCOM.

Received March 2006; revised June 2007; accepted November 2007

ACM Transactions on Computer Systems, Vol. 26, No. 1, Article 3, Publication date: February 2008.

